Write a polynomial [tex]f(x)[/tex] that meets the given conditions.

Degree 6 polynomial with zeros of [tex]3[/tex], [tex]\frac{7}{2}[/tex] (each with multiplicity 1), and [tex]0[/tex] (with multiplicity 4).



Answer :

To write a polynomial [tex]\( f(x) \)[/tex] that meets the specified conditions, follow these steps:

1. Identify the roots and their multiplicities:
- Root [tex]\( 3 \)[/tex] with multiplicity 1
- Root [tex]\( \frac{7}{2} \)[/tex] with multiplicity 1
- Root [tex]\( 0 \)[/tex] with multiplicity 4

2. Express the polynomial in factored form:
Using the roots and their multiplicities, we can write the polynomial as:
[tex]\[ f(x) = (x - 3)^1 (x - \frac{7}{2})^1 (x - 0)^4 \][/tex]
This can be simplified to:
[tex]\[ f(x) = (x - 3) (x - \frac{7}{2}) x^4 \][/tex]

3. Expand the polynomial:
We need to multiply these factors together and expand them to get the polynomial in standard form.

First, simplify the term with fractional coefficient:
[tex]\[ (x - \frac{7}{2}) = (x - \frac{7}{2}) = \left(x - \frac{7}{2}\right) \][/tex]
Rewrite it as:
[tex]\[ f(x) = x^4 (x-3)(x-\frac{7}{2}) \][/tex]

4. Combine [tex]\( (x - 3) \)[/tex] and [tex]\( (x - \frac{7}{2}) \)[/tex] first:
[tex]\[ (x - 3)(x - \frac{7}{2}) = x^2 - 3x - \frac{7}{2}x + \frac{21}{2} \][/tex]
Combine like terms:
[tex]\[ x^2 - \frac{13}{2}x + \frac{21}{2} \][/tex]

5. Multiply by [tex]\( x^4 \)[/tex]:
[tex]\[ x^4 \left( x^2 - \frac{13}{2}x + \frac{21}{2} \right) \][/tex]
Distribute [tex]\( x^4 \)[/tex]:
[tex]\[ = x^6 - \frac{13}{2}x^5 + \frac{21}{2}x^4 \][/tex]

So, the polynomial [tex]\( f(x) \)[/tex] in standard form that meets the given conditions is:
[tex]\[ f(x) = x^6 - \frac{13}{2}x^5 + \frac{21}{2}x^4 \][/tex]