Simplify the expression:

[tex]\[ \Rightarrow \frac{22}{7} \times \left( -\frac{7}{4} \right) \times \left( \frac{34}{4} \right) \times \frac{2}{1} \][/tex]



Answer :

To solve the expression [tex]\(\frac{22}{7} \times\left[-\frac{7}{4}\right] \times\left[\frac{34}{4}\right] \times \frac{2}{1}\)[/tex], we can follow these steps:

### Step 1: Simplify the Expression
First, we can simplify each fraction individually and then multiply them together. Note that multiplication of fractions is straightforward: multiply the numerators together and the denominators together.

### Step 2: Combine the Numerators and Denominators
Write the numerators and denominators as follows:

Numerator: [tex]\(22 \times (-7) \times 34 \times 2\)[/tex]

Denominator: [tex]\(7 \times 4 \times 4 \times 1\)[/tex]

### Step 3: Calculate the Numerator
Now multiply the numerators together:

[tex]\[ 22 \times (-7) = -154 \][/tex]

[tex]\[ -154 \times 34 = -5236 \][/tex]

[tex]\[ -5236 \times 2 = -10472 \][/tex]

So the final numerator is [tex]\(-10472\)[/tex].

### Step 4: Calculate the Denominator
Next, multiply the denominators together:

[tex]\[ 7 \times 4 = 28 \][/tex]

[tex]\[ 28 \times 4 = 112 \][/tex]

[tex]\[ 112 \times 1 = 112 \][/tex]

So the final denominator is [tex]\(112\)[/tex].

### Step 5: Divide the Numerator by the Denominator
Finally, divide the numerator by the denominator to get the final result:

[tex]\[ \frac{-10472}{112} = -93.5 \][/tex]

### Conclusion
The detailed step-by-step solution to the expression [tex]\(\frac{22}{7} \times\left[-\frac{7}{4}\right] \times\left[\frac{34}{4}\right] \times \frac{2}{1}\)[/tex] is:

[tex]\[ \frac{-10472}{112} = -93.5 \][/tex]

### Summary
- Numerator: [tex]\(-10472\)[/tex]
- Denominator: [tex]\(112\)[/tex]
- Result: [tex]\(-93.5\)[/tex]

Thus, the answer is:

[tex]\[ \frac{22}{7} \times\left[-\frac{7}{4}\right] \times\left[\frac{34}{4}\right] \times \frac{2}{1} = -93.5 \][/tex]