1. If [tex] \Delta = \left| \begin{array}{ccc} 1 & 3 & -2 \\ 4 & -5 & 6 \\ 3 & 5 & 2 \end{array} \right| [/tex], write the cofactor of [tex] a_{32} [/tex].



Answer :

Sure, let's find the cofactor of the element [tex]\(a_{32}\)[/tex] in the given matrix [tex]\(\Delta\)[/tex].

Given the matrix
[tex]\[ \Delta = \begin{vmatrix} 1 & 3 & -2 \\ 4 & -5 & 6 \\ 3 & 5 & 2 \end{vmatrix}, \][/tex]
we need to determine the cofactor of the entry at the 3rd row and 2nd column, which is [tex]\(a_{32} = 5\)[/tex].

### Step 1: Find Minor of [tex]\(a_{32}\)[/tex]
To find the minor of [tex]\(a_{32}\)[/tex], we need to remove the 3rd row and 2nd column from the original matrix. The remaining 2x2 matrix is:
[tex]\[ \begin{vmatrix} 1 & -2 \\ 4 & 6 \end{vmatrix}. \][/tex]

### Step 2: Calculate Determinant of the Minor
Next, find the determinant of this 2x2 matrix:
[tex]\[ \text{Det} = (1 \cdot 6) - (-2 \cdot 4) = 6 - (-8) = 6 + 8 = 14. \][/tex]
So, the minor of [tex]\(a_{32}\)[/tex] is [tex]\(14\)[/tex].

### Step 3: Calculate Cofactor of [tex]\(a_{32}\)[/tex]
The cofactor is given by multiplying the minor by [tex]\((-1)^{i+j}\)[/tex], where [tex]\(i\)[/tex] and [tex]\(j\)[/tex] are the row and column indices of the element. Here, [tex]\(i = 3\)[/tex] and [tex]\(j = 2\)[/tex]:
[tex]\[ \text{Cofactor of } a_{32} = (-1)^{3+2} \times \text{Minor of } a_{32}. \][/tex]

Calculate the exponent:
[tex]\[ (-1)^{3+2} = (-1)^5 = -1. \][/tex]

Thus, the cofactor of [tex]\(a_{32}\)[/tex] is:
[tex]\[ \text{Cofactor of } a_{32} = -1 \times 14 = -14. \][/tex]

### Conclusion
The cofactor of [tex]\(a_{32}\)[/tex] in the matrix [tex]\(\Delta\)[/tex] is [tex]\(-14\)[/tex].