Solve [tex]A x + B y = C[/tex] for [tex]x[/tex].

A. [tex]x = \frac{-B y + C}{A}[/tex]
B. [tex]x = \frac{B y + C}{A}[/tex]
C. [tex]x = \frac{B y - C}{A}[/tex]
D. [tex]x = \frac{-B y - C}{A}[/tex]



Answer :

To solve the equation [tex]\(Ax + By = C\)[/tex] for [tex]\(x\)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ Ax + By = C \][/tex]

2. Isolate the term involving [tex]\(x\)[/tex]. To do this, subtract [tex]\(By\)[/tex] from both sides of the equation:
[tex]\[ Ax = C - By \][/tex]

3. Now, solve for [tex]\(x\)[/tex] by dividing both sides of the equation by [tex]\(A\)[/tex], assuming [tex]\(A \neq 0\)[/tex]:
[tex]\[ x = \frac{C - By}{A} \][/tex]

Therefore, the solution for [tex]\(x\)[/tex] is:
[tex]\[ x = \frac{C - By}{A} \][/tex]

Among the given options:
[tex]\[ x = \frac{-By + C}{A} \][/tex]
[tex]\[ x = \frac{By + C}{A} \][/tex]
[tex]\[ x = \frac{By - C}{A} \][/tex]
[tex]\[ x = \frac{-By - C}{A} \][/tex]

The correct option is:
[tex]\[ x = \frac{-By + C}{A} \][/tex]