The formula [tex][tex]$Q = MC\Delta T$[/tex][/tex], where [tex][tex]$Q$[/tex][/tex] = heat flow, [tex][tex]$M$[/tex][/tex] = mass, [tex][tex]$C$[/tex][/tex] = specific heat, and [tex][tex]$\Delta T$[/tex][/tex] = change of temperature, is used to calculate heat flow. Solve this formula for [tex][tex]$\Delta T$[/tex][/tex].

A. [tex]\Delta T = Q - MC[/tex]

B. [tex]\Delta T = Q + MC[/tex]

C. [tex]\Delta T = QMC[/tex]

D. [tex]\Delta T = \frac{Q}{MC}[/tex]



Answer :

To solve the formula [tex]\( Q = M \cdot C \cdot T \)[/tex] for [tex]\( T \)[/tex], let's follow the steps:

1. The original formula is:
[tex]\[ Q = M \cdot C \cdot T \][/tex]

2. To isolate [tex]\( T \)[/tex], we need to get [tex]\( T \)[/tex] by itself on one side of the equation. We'll do this by dividing both sides of the equation by [tex]\( M \cdot C \)[/tex]:
[tex]\[ \frac{Q}{M \cdot C} = \frac{M \cdot C \cdot T}{M \cdot C} \][/tex]

3. Simplifying the right side, the [tex]\( M \cdot C \)[/tex] terms cancel each other out:
[tex]\[ \frac{Q}{M \cdot C} = T \][/tex]

4. This gives us the final expression for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{Q}{M \cdot C} \][/tex]

So the correct choice from the given options is:
[tex]\[ T = \frac{Q}{M \cdot C} \][/tex]

This corresponds to the fourth choice.