Solve [tex][tex]$y = x + 4$[/tex][/tex] for [tex][tex]$x$[/tex][/tex].

A. [tex][tex]$x = y - 4$[/tex][/tex]
B. [tex][tex]$x = y + 4$[/tex][/tex]
C. [tex][tex]$x = -y + 4$[/tex][/tex]
D. [tex][tex]$x = -y - 4$[/tex][/tex]



Answer :

To solve the equation [tex]\( y = x + 4 \)[/tex] for [tex]\( x \)[/tex], we need to isolate [tex]\( x \)[/tex] on one side of the equation. Let's go through the steps:

1. Start with the original equation:
[tex]\[ y = x + 4 \][/tex]

2. Our goal is to isolate [tex]\( x \)[/tex]. To do this, we need to move the constant term (4) from the right side of the equation to the left side. We can do this by subtracting 4 from both sides of the equation:
[tex]\[ y - 4 = x + 4 - 4 \][/tex]

3. Simplify the right side by performing the subtraction:
[tex]\[ y - 4 = x \][/tex]

4. This can be rewritten as:
[tex]\[ x = y - 4 \][/tex]

So, the solution to the equation [tex]\( y = x + 4 \)[/tex] is:
[tex]\[ x = y - 4 \][/tex]

Among the given options, you can see that the correct solution is:
[tex]\[ x = y - 4 \][/tex]