9) Simplify the following expression: [tex]\frac{n+2}{2n+2} + \frac{3}{2n}[/tex]

A. [tex]\frac{-n^2+3n+3}{2n(n+1)}[/tex]
B. [tex]\frac{n-n^2+6}{4n(n+1)}[/tex]
C. [tex]\frac{n^2+5n+3}{2n(n+1)}[/tex]
D. [tex]\frac{5}{2(2n+1)}[/tex]



Answer :

Let's simplify the given expression step by step:

Given expression:
[tex]$ \frac{n+2}{2n+2} + \frac{3}{2n} $[/tex]

1. Simplify the first fraction [tex]\(\frac{n+2}{2n+2}\)[/tex]:

Notice that both the numerator and the denominator can be divided by 2:
[tex]$ \frac{n+2}{2n+2} = \frac{n+2}{2(n+1)} = \frac{n+2}{2(n+1)} $[/tex]

Thus, the simplified first fraction is:
[tex]$ \frac{n+2}{2(n+1)} $[/tex]

2. The second fraction remains as:
[tex]$ \frac{3}{2n} $[/tex]

3. To add the two fractions [tex]\(\frac{n+2}{2(n+1)} + \frac{3}{2n}\)[/tex], we need a common denominator. The common denominator for [tex]$\frac{n+2}{2(n+1)}$[/tex] and [tex]$\frac{3}{2n}$[/tex] is:
[tex]$ 2n(n+1) $[/tex]

4. Rewrite each fraction with the common denominator:

For [tex]\(\frac{n+2}{2(n+1)}\)[/tex]:
[tex]$ \frac{n+2}{2(n+1)} = \frac{(n+2)n}{2n(n+1)} = \frac{n^2 + 2n}{2n(n+1)} $[/tex]

For [tex]\(\frac{3}{2n}\)[/tex]:
[tex]$ \frac{3}{2n} = \frac{3(n+1)}{2n(n+1)} = \frac{3n + 3}{2n(n+1)} $[/tex]

5. Add the two fractions together:
[tex]$ \frac{n^2 + 2n}{2n(n+1)} + \frac{3n + 3}{2n(n+1)} = \frac{(n^2 + 2n) + (3n + 3)}{2n(n+1)} $[/tex]

6. Combine like terms in the numerator:
[tex]$ \frac{n^2 + 2n + 3n + 3}{2n(n+1)} = \frac{n^2 + 5n + 3}{2n(n+1)} $[/tex]

Hence, the simplified expression is:
[tex]$ \frac{n^2 + 5n + 3}{2n(n+1)} $[/tex]

Review the given options:

A) [tex]\(\frac{-n^2 + 3n + 3}{2n(n+1)}\)[/tex]

B) [tex]\(\frac{n - n^2 + 6}{4n(n+1)}\)[/tex]

C) [tex]\(\frac{n^2 + 5n + 3}{2n(n+1)}\)[/tex]

D) [tex]\(\frac{5}{2(2n + 1)}\)[/tex]

Comparing our result [tex]\(\frac{n^2 + 5n + 3}{2n(n+1)}\)[/tex] to the options, we see that the correct choice is:

C) [tex]\(\frac{n^2 + 5n + 3}{2n(n+1)}\)[/tex]
Answer is c I took the apex quiz