Answered

What is the electric potential of a [tex][tex]$4.5 \times 10^{-5} C$[/tex][/tex] charge that has an electric potential energy of [tex][tex]$0.027 J$[/tex][/tex]?

[tex]\[\square \text{ V}\][/tex]



Answer :

To find the electric potential [tex]\( V \)[/tex], we will use the relationship between electric potential energy [tex]\( U \)[/tex], electric charge [tex]\( Q \)[/tex], and electric potential [tex]\( V \)[/tex]:

[tex]\[ V = \frac{U}{Q} \][/tex]

where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( Q \)[/tex] is the electric charge, and
- [tex]\( V \)[/tex] is the electric potential.

Given the values:
- Electric potential energy [tex]\( U = 0.027 \)[/tex] Joules,
- Electric charge [tex]\( Q = 4.5 \times 10^{-5} \)[/tex] Coulombs.

We substitute these values into the formula:

[tex]\[ V = \frac{0.027}{4.5 \times 10^{-5}} \][/tex]

Performing the division:

[tex]\[ V = \frac{0.027}{4.5 \times 10^{-5}} = 600 \text{ Volts} \][/tex]

Therefore, the electric potential of the charge is [tex]\( 600 \)[/tex] Volts.