Answer :
To find the acceleration of the wooden block when it hits the sensor, we can use Newton's second law of motion, which states that force ([tex]\( F \)[/tex]) equals mass ([tex]\( m \)[/tex]) multiplied by acceleration ([tex]\( a \)[/tex]). This can be written as:
[tex]\[ F = m \cdot a \][/tex]
Given the values:
- The mass ([tex]\( m \)[/tex]) of the wooden block is 0.5 kilograms.
- The force ([tex]\( F \)[/tex]) measured by the sensor is 4.9 newtons.
We need to solve for the acceleration ([tex]\( a \)[/tex]). We can rearrange the equation to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{F}{m} \][/tex]
Substituting in the known values:
[tex]\[ a = \frac{4.9 \, \text{newtons}}{0.5 \, \text{kilograms}} \][/tex]
When we perform the division:
[tex]\[ a = 9.8 \, \text{m/s}^2 \][/tex]
Therefore, the acceleration of the wooden block when it hits the sensor is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
The correct answer is:
D. [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]
[tex]\[ F = m \cdot a \][/tex]
Given the values:
- The mass ([tex]\( m \)[/tex]) of the wooden block is 0.5 kilograms.
- The force ([tex]\( F \)[/tex]) measured by the sensor is 4.9 newtons.
We need to solve for the acceleration ([tex]\( a \)[/tex]). We can rearrange the equation to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{F}{m} \][/tex]
Substituting in the known values:
[tex]\[ a = \frac{4.9 \, \text{newtons}}{0.5 \, \text{kilograms}} \][/tex]
When we perform the division:
[tex]\[ a = 9.8 \, \text{m/s}^2 \][/tex]
Therefore, the acceleration of the wooden block when it hits the sensor is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
The correct answer is:
D. [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]