Answer :
Sure, let's solve this step-by-step.
1. Identify the given information:
- The distance traveled by the train is [tex]\(150 \text{ meters} \)[/tex].
- The time taken to travel this distance is [tex]\(2 \text{ seconds} \)[/tex].
2. Understand the formula for speed:
The formula to calculate speed is:
[tex]\[ \text{Speed} = \frac{\text{Distance}}{\text{Time}} \][/tex]
3. Substitute the given values into the formula:
- Distance ([tex]\( \text{d} \)[/tex]) = [tex]\(150 \text{ meters} \)[/tex]
- Time ([tex]\( \text{t} \)[/tex]) = [tex]\(2 \text{ seconds} \)[/tex]
Now, plug these values into the speed formula:
[tex]\[ \text{Speed} = \frac{150 \text{ meters}}{2 \text{ seconds}} \][/tex]
4. Perform the division:
[tex]\[ \text{Speed} = 75 \text{ meters per second (m/s)} \][/tex]
Thus, the speed of the train is [tex]\(75 \text{ m/s} \)[/tex].
1. Identify the given information:
- The distance traveled by the train is [tex]\(150 \text{ meters} \)[/tex].
- The time taken to travel this distance is [tex]\(2 \text{ seconds} \)[/tex].
2. Understand the formula for speed:
The formula to calculate speed is:
[tex]\[ \text{Speed} = \frac{\text{Distance}}{\text{Time}} \][/tex]
3. Substitute the given values into the formula:
- Distance ([tex]\( \text{d} \)[/tex]) = [tex]\(150 \text{ meters} \)[/tex]
- Time ([tex]\( \text{t} \)[/tex]) = [tex]\(2 \text{ seconds} \)[/tex]
Now, plug these values into the speed formula:
[tex]\[ \text{Speed} = \frac{150 \text{ meters}}{2 \text{ seconds}} \][/tex]
4. Perform the division:
[tex]\[ \text{Speed} = 75 \text{ meters per second (m/s)} \][/tex]
Thus, the speed of the train is [tex]\(75 \text{ m/s} \)[/tex].