The table represents an exponential function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 6 \\
\hline
2 & 4 \\
\hline
3 & [tex]$\frac{8}{3}$[/tex] \\
\hline
4 & [tex]$\frac{16}{9}$[/tex] \\
\hline
\end{tabular}

What is the multiplicative rate of change of the function?

A. [tex]$\frac{1}{3}$[/tex]
B. [tex]$\frac{2}{3}$[/tex]
C. 2
D. 9



Answer :

To determine the multiplicative rate of change for the given exponential function represented by the table, let’s analyze the values step-by-step.

Firstly, the table values are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 6 \\ \hline 2 & 4 \\ \hline 3 & \frac{8}{3} \\ \hline 4 & \frac{16}{9} \\ \hline \end{array} \][/tex]

Exponential functions have the form [tex]\( y = ab^x \)[/tex], where [tex]\( b \)[/tex] represents the multiplicative rate of change.

Now, check the rate of change between each consecutive value of [tex]\( y \)[/tex]:

1. From [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{y(2)}{y(1)} = \frac{4}{6} = \frac{2}{3} \][/tex]

2. From [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{y(3)}{y(2)} = \frac{\frac{8}{3}}{4} = \frac{8}{3} \cdot \frac{1}{4} = \frac{8}{12} = \frac{2}{3} \][/tex]

3. From [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]:
[tex]\[ \text{Rate of change} = \frac{y(4)}{y(3)} = \frac{\frac{16}{9}}{\frac{8}{3}} = \frac{16}{9} \cdot \frac{3}{8} = \frac{48}{72} = \frac{2}{3} \][/tex]

The ratio is consistent and equals [tex]\(\frac{2}{3}\)[/tex] for each pair of consecutive [tex]\( y \)[/tex] values.

Thus, the multiplicative rate of change of the function is:
[tex]\[ \boxed{\frac{2}{3}} \][/tex]