Solve the inequality.

[tex]\[ 2(4x - 3) \geq -3(3x) + 5x \][/tex]

A. [tex]\( x \geq 0.5 \)[/tex]
B. [tex]\( x \geq 2 \)[/tex]
C. [tex]\( (-\infty, 0.5] \)[/tex]
D. [tex]\( (-\infty, 2] \)[/tex]



Answer :

To solve the inequality [tex]\( 2(4x - 3) \leq -3(3x) + 5x \)[/tex], let's go through this step by step:

1. Distribute the constants inside the parentheses:
- For [tex]\( 2(4x - 3) \)[/tex]:
[tex]\[ 2 \cdot 4x - 2 \cdot 3 = 8x - 6 \][/tex]
- For [tex]\( -3(3x) \)[/tex]:
[tex]\[ -3 \cdot 3x = -9x \][/tex]

2. Substitute these into the inequality:
[tex]\[ 8x - 6 \leq -9x + 5x \][/tex]

3. Combine like terms on the right-hand side:
[tex]\[ -9x + 5x = -4x \][/tex]
So the inequality now is:
[tex]\[ 8x - 6 \leq -4x \][/tex]

4. Move all the [tex]\( x \)[/tex] terms to one side and constants to the other side:
Add [tex]\( 4x \)[/tex] to both sides:
[tex]\[ 8x + 4x - 6 \leq 0 \][/tex]
Simplify:
[tex]\[ 12x - 6 \leq 0 \][/tex]

5. Isolate the [tex]\( x \)[/tex] term:
Add 6 to both sides:
[tex]\[ 12x \leq 6 \][/tex]
Divide by 12:
[tex]\[ x \leq \frac{6}{12} \][/tex]
Simplify:
[tex]\[ x \leq \frac{1}{2} \][/tex]

So the solution to the inequality is:
[tex]\[ x \leq \frac{1}{2} \][/tex]

In interval notation, this is:
[tex]\[ (-\infty, 0.5] \][/tex]

Thus, the correct answer is:
[tex]\[ (-\infty, 0.5] \][/tex]