Answer :
Let's fill in the table step-by-step using the given numerical results:
1. Predicted Percentage:
- The predicted percentage for black fur is 60%.
- The predicted percentage for white fur is 40%.
2. Simulated Number:
- The number of animals with black fur in the simulation is 120.
- The number of animals with white fur in the simulation is 80.
3. Simulated Percentage:
- To calculate the simulated percentages, we first find the total number of animals, which is [tex]\( 120 + 80 = 200 \)[/tex].
- The simulated percentage of black fur can be calculated as [tex]\( \frac{120}{200} \times 100 = 60\% \)[/tex].
- The simulated percentage of white fur can be calculated as [tex]\( \frac{80}{200} \times 100 = 40\% \)[/tex].
Now let's complete the table.
[tex]\[ \begin{tabular}{|c|l|l|} \cline{2-3} & \textbf{Black Fur} & \textbf{White Fur} \\ \hline \textbf{\begin{tabular}{c} Predicted \\ Percentage \end{tabular}} & \textbf{60\%} & \textbf{40\%} \\ \hline \textbf{\begin{tabular}{c} Simulated \\ Number \end{tabular}} & \textbf{120} & \textbf{80} \\ \hline \textbf{\begin{tabular}{c} Simulated \\ Percentage \end{tabular}} & \textbf{60.0\%} & \textbf{40.0\%} \\ \hline \end{tabular} \][/tex]
So, the completed table is:
[tex]\[ \begin{tabular}{|c|l|l|} \cline{2-3} & \textbf{Black Fur} & \textbf{White Fur} \\ \hline \textbf{\begin{tabular}{c} Predicted \\ Percentage \end{tabular}} & \textbf{60\%} & \textbf{40\%} \\ \hline \textbf{Simulated Number} & \textbf{120} & \textbf{80} \\ \hline \textbf{\begin{tabular}{c} Simulated \\ Percentage \end{tabular}} & \textbf{60.0\%} & \textbf{40.0\%} \\ \hline \end{tabular} \][/tex]
1. Predicted Percentage:
- The predicted percentage for black fur is 60%.
- The predicted percentage for white fur is 40%.
2. Simulated Number:
- The number of animals with black fur in the simulation is 120.
- The number of animals with white fur in the simulation is 80.
3. Simulated Percentage:
- To calculate the simulated percentages, we first find the total number of animals, which is [tex]\( 120 + 80 = 200 \)[/tex].
- The simulated percentage of black fur can be calculated as [tex]\( \frac{120}{200} \times 100 = 60\% \)[/tex].
- The simulated percentage of white fur can be calculated as [tex]\( \frac{80}{200} \times 100 = 40\% \)[/tex].
Now let's complete the table.
[tex]\[ \begin{tabular}{|c|l|l|} \cline{2-3} & \textbf{Black Fur} & \textbf{White Fur} \\ \hline \textbf{\begin{tabular}{c} Predicted \\ Percentage \end{tabular}} & \textbf{60\%} & \textbf{40\%} \\ \hline \textbf{\begin{tabular}{c} Simulated \\ Number \end{tabular}} & \textbf{120} & \textbf{80} \\ \hline \textbf{\begin{tabular}{c} Simulated \\ Percentage \end{tabular}} & \textbf{60.0\%} & \textbf{40.0\%} \\ \hline \end{tabular} \][/tex]
So, the completed table is:
[tex]\[ \begin{tabular}{|c|l|l|} \cline{2-3} & \textbf{Black Fur} & \textbf{White Fur} \\ \hline \textbf{\begin{tabular}{c} Predicted \\ Percentage \end{tabular}} & \textbf{60\%} & \textbf{40\%} \\ \hline \textbf{Simulated Number} & \textbf{120} & \textbf{80} \\ \hline \textbf{\begin{tabular}{c} Simulated \\ Percentage \end{tabular}} & \textbf{60.0\%} & \textbf{40.0\%} \\ \hline \end{tabular} \][/tex]