If [tex][tex]$f(x)=3^x+10$[/tex][/tex] and [tex][tex]$g(x)=2x-4$[/tex][/tex], find [tex][tex]$(f+g)(x)$[/tex][/tex].

A. [tex][tex]$(f+g)(x)=3^x+2x+6$[/tex][/tex]

B. [tex][tex]$(f+g)(x)=3^x-2x+14$[/tex][/tex]

C. [tex][tex]$(f+g)(x)=-3^x-2x-14$[/tex][/tex]

D. [tex][tex]$(f+g)(x)=5x+6$[/tex][/tex]



Answer :

Let's first understand what it means to find [tex]\((f+g)(x)\)[/tex]. The notation [tex]\((f+g)(x)\)[/tex] represents the sum of the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]. To do this, we will add the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] directly.

Given:
[tex]\[ f(x) = 3^x + 10 \][/tex]
[tex]\[ g(x) = 2x - 4 \][/tex]

To find [tex]\((f+g)(x)\)[/tex], we need to add [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:

[tex]\[ (f+g)(x) = f(x) + g(x) \][/tex]

Substitute the given expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:

[tex]\[ (f+g)(x) = (3^x + 10) + (2x - 4) \][/tex]

Combine like terms:

[tex]\[ (f+g)(x) = 3^x + 10 + 2x - 4 \][/tex]

Simplify the equation by combining the constant terms [tex]\(10-4\)[/tex]:

[tex]\[ (f+g)(x) = 3^x + 2x + 6 \][/tex]

Thus, the expression for [tex]\((f+g)(x)\)[/tex] is:

[tex]\[ (f+g)(x) = 3^x + 2x + 6 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{3^x + 2x + 6} \][/tex]

This corresponds to option A:
[tex]\[ \boxed{(f+g)(x) = 3^x + 2x + 6} \][/tex]