Which function represents a reflection of [tex][tex]$f(x)=2(0.35)^x$[/tex][/tex] over the [tex]y[/tex]-axis?

A. [tex]h(x)=2(0.35)^x[/tex]
B. [tex]h(x)=-2(0.35)^x[/tex]
C. [tex]h(x)=2(0.35)^{-x}[/tex]
D. [tex]h(x)=2(-0.35)^{-x}[/tex]



Answer :

To determine which function represents the reflection of [tex]\( f(x) = 2(0.35)^x \)[/tex] over the [tex]\( y \)[/tex]-axis, you need to understand how reflections work in the coordinate plane.

A reflection of a function [tex]\( f(x) \)[/tex] over the [tex]\( y \)[/tex]-axis is achieved by replacing [tex]\( x \)[/tex] with [tex]\( -x \)[/tex] in the function [tex]\( f(x) \)[/tex].

Given the original function:
[tex]\[ f(x) = 2(0.35)^x \][/tex]

To reflect this function over the [tex]\( y \)[/tex]-axis, we replace [tex]\( x \)[/tex] with [tex]\( -x \)[/tex]:
[tex]\[ h(x) = 2(0.35)^{-x} \][/tex]

Thus, the function [tex]\( h(x) \)[/tex] that represents the reflection of [tex]\( f(x) \)[/tex] over the [tex]\( y \)[/tex]-axis is:
[tex]\[ h(x) = 2(0.35)^{-x} \][/tex]

Among the given options, this corresponds to:
[tex]\[ h(x) = 2(0.35)^{-x} \][/tex]

Therefore, the answer is:
[tex]\[ h(x) = 2(0.35)^{-x} \][/tex]

The correct option is:
[tex]\[ h(x) = 2(0.35)^{-x} \][/tex]