Which of these expressions is equivalent to [tex]\log (22 \cdot 11)[/tex]?

A. [tex]\log (22) - \log (11)[/tex]

B. [tex]\log (22) \cdot \log (11)[/tex]

C. [tex]22 \cdot \log (11)[/tex]

D. [tex]\log (22) + \log (11)[/tex]



Answer :

To determine which of the given expressions is equivalent to [tex]\(\log(22 \cdot 11)\)[/tex], we need to use the properties of logarithms.

One of the fundamental properties of logarithms is:

[tex]\[ \log(a \cdot b) = \log(a) + \log(b) \][/tex]

This property states that the logarithm of a product is equal to the sum of the logarithms of the factors.

Let’s apply this property to the given problem:

[tex]\[ \log(22 \cdot 11) = \log(22) + \log(11) \][/tex]

Thus, the expression [tex]\(\log(22 \cdot 11)\)[/tex] simplifies to:

[tex]\[ \log(22) + \log(11) \][/tex]

Looking at the options provided:

A. [tex]\(\log(22) - \log(11)\)[/tex]

B. [tex]\(\log(22) \cdot \log(11)\)[/tex]

C. [tex]\(22 \cdot \log(11)\)[/tex]

D. [tex]\(\log(22) + \log(11)\)[/tex]

We can see that the correct expression, according to the logarithmic property we applied, is option D:

[tex]\[ \log(22) + \log(11) \][/tex]

Therefore, the correct answer is:

D. [tex]\(\log(22) + \log(11)\)[/tex]