Sure, let's break down the steps to solve the given expression [tex]\(\frac{105}{22} \times (1.251 - 0.620)\)[/tex].
1. Calculate the difference [tex]\(1.251 - 0.620\)[/tex]:
[tex]\[
1.251 - 0.620 = 0.631
\][/tex]
2. Calculate the quotient [tex]\(\frac{105}{22}\)[/tex]:
[tex]\[
\frac{105}{22} \approx 4.7727
\][/tex]
(Note: We approximate to a few decimal places for clarity.)
3. Multiply the quotient by the difference:
[tex]\[
4.7727 \times 0.631 \approx 3.0116
\][/tex]
So, the step-by-step calculation gives us three key results:
- The quotient: [tex]\(\frac{105}{22} \approx 4.7727\)[/tex]
- The difference: [tex]\(1.251 - 0.620 = 0.631\)[/tex]
- The final result of [tex]\(\frac{105}{22} \times (1.251 - 0.620)\)[/tex] is approximately [tex]\(3.0116\)[/tex].