What is the inverse of the function [tex][tex]$f(x)=\frac{1}{9} x+2?$[/tex][/tex]

A. [tex][tex]$h(x)=18 x-2$[/tex][/tex]
B. [tex][tex]$h(x)=9 x-18$[/tex][/tex]
C. [tex][tex]$h(x)=9 x+18$[/tex][/tex]
D. [tex][tex]$h(x)=18 x+2$[/tex][/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = \frac{1}{9} x + 2 \)[/tex], we need to follow a systematic process:

1. Start with the function [tex]\( y = f(x) \)[/tex]:
[tex]\[ y = \frac{1}{9} x + 2 \][/tex]

2. Swap the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. This means we express [tex]\( x \)[/tex] as a function of [tex]\( y \)[/tex]:
[tex]\[ x = \frac{1}{9} y + 2 \][/tex]

3. Solve for [tex]\( y \)[/tex] to find the inverse function:
[tex]\[ x = \frac{1}{9} y + 2 \][/tex]

First, isolate [tex]\( y \)[/tex] on one side. Subtract 2 from both sides:
[tex]\[ x - 2 = \frac{1}{9} y \][/tex]

Now, multiply both sides by 9 to solve for [tex]\( y \)[/tex]:
[tex]\[ 9(x - 2) = y \][/tex]

Simplify the expression:
[tex]\[ y = 9x - 18 \][/tex]

Therefore, the inverse function [tex]\( h(x) \)[/tex] is:
[tex]\[ h(x) = 9x - 18 \][/tex]

So the correct answer from the given options is:
[tex]\[ \boxed{h(x) = 9 x - 18} \][/tex]