What is the inverse of the function [tex]f(x) = 2x + 1[/tex]?

A. [tex]h(x) = \frac{1}{2} x - \frac{1}{2}[/tex]
B. [tex]h(x) = \frac{1}{2} x + \frac{1}{2}[/tex]
C. [tex]h(x) = \frac{1}{2} x - 2[/tex]
D. [tex]h(x) = \frac{1}{2} x + 2[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = 2x + 1 \)[/tex], let's go through the process step-by-step:

1. Express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
Start by writing the function in terms of [tex]\( y \)[/tex],
[tex]\[ y = f(x) = 2x + 1. \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
To find the inverse function, swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex],
[tex]\[ x = 2y + 1. \][/tex]

3. Solve for [tex]\( y \)[/tex]:
Now solve the equation for [tex]\( y \)[/tex].

- Subtract 1 from both sides,
[tex]\[ x - 1 = 2y. \][/tex]

- Divide both sides by 2,
[tex]\[ y = \frac{x - 1}{2}. \][/tex]

4. Simplify the expression:
Simplify the right-hand side of the equation,
[tex]\[ y = \frac{x}{2} - \frac{1}{2}. \][/tex]

So, the inverse function [tex]\( h(x) \)[/tex] is:
[tex]\[ h(x) = \frac{x}{2} - \frac{1}{2}. \][/tex]

Therefore, the correct choice is:
[tex]\[ h(x) = \frac{1}{2} x - \frac{1}{2}. \][/tex]