What is the equation of the line that passes through [tex]\((5,-2)\)[/tex] and [tex]\((-3,4)\)[/tex]?

A. [tex]\(3x - 4y - 7 = 0\)[/tex]
B. [tex]\(3x + 4y - 7 = 0\)[/tex]
C. [tex]\(-3x + 4y - 7 = 0\)[/tex]



Answer :

To find the equation of the line that passes through the points [tex]\((5, -2)\)[/tex] and [tex]\((-3, 4)\)[/tex], let's go through the process step by step:

1. Compute the slope [tex]\(m\)[/tex] of the line:
The slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Substituting the given points [tex]\((x_1, y_1) = (5, -2)\)[/tex] and [tex]\((x_2, y_2) = (-3, 4)\)[/tex]:

[tex]\[ m = \frac{4 - (-2)}{-3 - 5} = \frac{4 + 2}{-3 - 5} = \frac{6}{-8} = -\frac{3}{4} \][/tex]

2. Find the y-intercept [tex]\(b\)[/tex]:
We use the point-slope form of the linear equation [tex]\(y = mx + b\)[/tex] and one of the points to find the y-intercept [tex]\(b\)[/tex]. Using the point [tex]\((5, -2)\)[/tex] as an example:

[tex]\[ -2 = -\frac{3}{4} \cdot 5 + b \][/tex]

Simplifying and solving for [tex]\(b\)[/tex]:

[tex]\[ -2 = -\frac{15}{4} + b \\ -2 + \frac{15}{4} = b \\ -\frac{8}{4} + \frac{15}{4} = b \\ \frac{7}{4} = b \][/tex]

3. Write the equation in slope-intercept form:
Now we have the slope [tex]\(m = -\frac{3}{4}\)[/tex] and the y-intercept [tex]\(b = \frac{7}{4}\)[/tex]. The slope-intercept form of the line is:

[tex]\[ y = -\frac{3}{4}x + \frac{7}{4} \][/tex]

4. Convert to standard form [tex]\(Ax + By + C = 0\)[/tex]:
Multiplying the entire equation by 4 to clear the fractions:

[tex]\[ 4y = -3x + 7 \][/tex]

Rearrange to standard form:

[tex]\[ 3x + 4y - 7 = 0 \][/tex]

Therefore, the equation of the line passing through the points [tex]\((5, -2)\)[/tex] and [tex]\((-3, 4)\)[/tex] is

[tex]\[ 3x + 4y - 7 = 0 \][/tex]

So, the correct answer is:

[tex]\[ 3 x + 4 y - 7 = 0 \][/tex]