The table represents the function [tex]\( f(x) \)[/tex]. What is [tex]\( f(3) \)[/tex]?

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-3 & -9 \\
\hline
-2 & -6 \\
\hline
-1 & -3 \\
\hline
0 & 0 \\
\hline
1 & 3 \\
\hline
2 & 6 \\
\hline
3 & 9 \\
\hline
\end{tabular}
\][/tex]

A. -9
B. -1
C. 1
D. 9



Answer :

To determine the value of [tex]\( f(3) \)[/tex] using the provided table, follow these steps:

1. Observe the table that represents the values of the function [tex]\( f(x) \)[/tex] for different [tex]\( x \)[/tex] values:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -3 & -9 \\ \hline -2 & -6 \\ \hline -1 & -3 \\ \hline 0 & 0 \\ \hline 1 & 3 \\ \hline 2 & 6 \\ \hline 3 & 9 \\ \hline \end{tabular} \][/tex]

2. Locate the row where [tex]\( x = 3 \)[/tex].

3. Look at the corresponding value in the [tex]\( f(x) \)[/tex] column for [tex]\( x = 3 \)[/tex].

From the table, when [tex]\( x = 3 \)[/tex], [tex]\( f(x) = 9 \)[/tex].

Thus, [tex]\( f(3) = 9 \)[/tex].