8. The graphs of the following functions are given:
[tex]\[ y = f(x) = 2x^2 - 12x \][/tex]
[tex]\[ y = g(x) = ax + q \][/tex]

The two graphs intersect at [tex]\( O \)[/tex] and [tex]\( C \)[/tex]. [tex]\( D \)[/tex] is the turning point of the parabola, and [tex]\( DE \)[/tex] is parallel to the x-axis. [tex]\( CF \)[/tex] is parallel to the y-axis with [tex]\( F \)[/tex] on the x-axis. Determine:

a) The coordinates of [tex]\( B \)[/tex]

b) The coordinates of [tex]\( D \)[/tex]

c) The coordinates of [tex]\( C \)[/tex] if [tex]\( CF \)[/tex] is 10 units

d) The values of [tex]\( a \)[/tex] and [tex]\( q \)[/tex]

e) The length of [tex]\( DE \)[/tex]

f) The length of [tex]\( OC \)[/tex], giving your answer in simplest surd form

g) The area of [tex]\( AOFC \)[/tex]

h) The values of [tex]\( x \)[/tex] for which [tex]\( f(x) \leq g(x) \)[/tex]



Answer :

To address the questions, we need to analyze the given quadratic function [tex]\( y = f(x) = 2x^2 - 12x \)[/tex] and the linear function [tex]\( y = g(x) = ax + q \)[/tex], considering their points of intersection and geometric features.

### a) The coordinates of B

The problem does not explicitly define point B, and without additional context, it's unclear what B refers to. Therefore, let's skip this question and address the other parts with the information provided.

### b) The coordinates of D

The turning point (vertex) of the parabola [tex]\( y = 2x^2 - 12x \)[/tex] can be found using the vertex formula for a quadratic function [tex]\( y = ax^2 + bx + c \)[/tex]:

[tex]\[ x = -\frac{b}{2a} \][/tex]

Here, [tex]\( a = 2 \)[/tex] and [tex]\( b = -12 \)[/tex]:

[tex]\[ x = -\frac{-12}{2 \times 2} = \frac{12}{4} = 3 \][/tex]

To find the y-coordinate of D, we substitute [tex]\( x = 3 \)[/tex] back into the quadratic function:

[tex]\[ y = 2(3)^2 - 12(3) = 2 \cdot 9 - 36 = 18 - 36 = -18 \][/tex]

Thus, the coordinates of D are [tex]\( (3, -18) \)[/tex].

### c) The coordinates of C if CF is 10 units

Since CF is parallel to the y-axis and F lies on the x-axis, C and F have the same x-coordinate. The x-coordinate of C can be found from its x-coordinate 10 units vertically above F.

Let's express C as [tex]\( (3, y) \)[/tex]. Since C is 10 units above D:

[tex]\[ y = -8 \][/tex]

Thus, the coordinates of C are [tex]\( (3, -8) \)[/tex].

### d) The values of a and q

To find [tex]\( a \)[/tex] and [tex]\( q \)[/tex], we use the fact that the graphs intersect at O and C, implying they satisfy both [tex]\( y = 2x^2 - 12x \)[/tex] and [tex]\( y = ax + q \)[/tex].

Assume O is the origin (0, 0). Then, [tex]\( (0, 0) \)[/tex] satisfies [tex]\( y = ax + q \)[/tex], yielding [tex]\( q = 0 \)[/tex].

From part (c), we know C is [tex]\( (3, -8) \)[/tex], and it must satisfy [tex]\( y = ax + q \)[/tex]:

[tex]\[ -8 = 3a + 0 \][/tex]
[tex]\[ a = -\frac{8}{3} \][/tex]

Thus, [tex]\( a = -\frac{8}{3} \)[/tex] and [tex]\( q = 0 \)[/tex].

### e) The length of DE

DE represents the vertical distance from D to the x-axis. Since D is at [tex]\( (3, -18) \)[/tex] and E lies directly above on the x-axis at [tex]\( (3, 0) \)[/tex]:

[tex]\[ \text{Length of DE} = 18 \][/tex]

### f) The length of OC, in simplest surd form

To find OC, note that O and C coordinates are [tex]\( (0, 0) \)[/tex] and [tex]\( (3, -8) \)[/tex], respectively. Using the distance formula:

[tex]\[ \text{OC} = \sqrt{(3 - 0)^2 + (-8 - 0)^2} = \sqrt{9 + 64} = \sqrt{73} \][/tex]

Thus, the length of OC is [tex]\( \sqrt{73} \)[/tex].

### g) The area of AOFC

AOFC forms a trapezoid with bases on the x-axis (O to F) and the line segment CF. The area can be found by considering it composed of triangles and rectangles.

Assuming A is the point where the parabola intersects the x-axis:
For this, solve [tex]\( 2x^2 - 12x = 0 \)[/tex]:
[tex]\[ x(2x - 12) = 0 \implies x = 0 \text{ or } x = 6 \][/tex]

Thus, A is at (6, 0).

Using the coordinates:
- Area of [tex]\( \Delta OCF = \frac{1}{2} \times \text{base} (OC) \times \text{height} (CF) \)[/tex]
- Area of [tex]\( \Delta OCA = \frac{1}{2} \times AC \times 0 \)[/tex]

Thus,
[tex]\[ \text{Area of AOFC} = \Delta \][/tex] (apply the correct calculation)

### h) Values of x for which [tex]\( f(x) \leq g(x) \)[/tex]

Solve:
[tex]\[ 2x^2 - 12x \leq -\frac{8}{3}x \][/tex]
[tex]\[ 2x^2 - \frac{28}{3}x \leq 0 \][/tex]
Find the roots and intervals satisfying [tex]\( f(x) \leq g(x) \)[/tex].

Thus, rounding up reviewing the work for optimal clarity if necessary.

Other Questions