Select the correct answer.

Simplify the expression:
[tex]\[ \sqrt[5]{224 x^{11} y^8} \][/tex]

A. [tex]\( 2 x y^3 \sqrt[5]{7 x^3 y^2} \)[/tex]

B. [tex]\( 2 x y \sqrt[3]{5 x y^3} \)[/tex]

C. [tex]\( 2 x^2 y \sqrt[3]{7 x y^3} \)[/tex]

D. [tex]\( 2 x^2 y^2 \sqrt[3]{5 x^7 y^5} \)[/tex]



Answer :

Let's simplify the given expression step-by-step:

Given expression:
[tex]\[ \sqrt[3]{224 \cdot x^{11} \cdot y^8} \][/tex]

### Step 1: Prime Factorization and Separation of Terms
Start by breaking down each component inside the cube root.

- Factorizing 224:
[tex]\[ 224 = 2^5 \cdot 7 \][/tex]

So we have:
[tex]\[ 224 \cdot x^{11} \cdot y^8 = (2^5 \cdot 7) \cdot (x^{10} \cdot x) \cdot (y^6 \cdot y^2) \][/tex]

### Step 2: Separate the Terms Under the Cube Root
We can rewrite the expression:
[tex]\[ \sqrt[3]{2^5 \cdot 7 \cdot x^{10} \cdot x \cdot y^6 \cdot y^2} \][/tex]

### Step 3: Distribute the Cube Root
Distribute the cube root across each multiplicative term:
[tex]\[ \sqrt[3]{2^5} \cdot \sqrt[3]{7} \cdot \sqrt[3]{x^{10}} \cdot \sqrt[3]{x} \cdot \sqrt[3]{y^6} \cdot \sqrt[3]{y^2} \][/tex]

### Step 4: Simplify Each Term Within the Cube Root
- [tex]\(\sqrt[3]{2^5} = 2^{5/3}\)[/tex]
- [tex]\(\sqrt[3]{7}\)[/tex] stays as is
- [tex]\(\sqrt[3]{x^{10}} = x^{10/3}\)[/tex]
- [tex]\(\sqrt[3]{x}\)[/tex] stays as is
- [tex]\(\sqrt[3]{y^6} = y^{6/3} = y^2\)[/tex]
- [tex]\(\sqrt[3]{y^2}\)[/tex] stays as is

Combine these results:
[tex]\[ 2^{5/3} x^{10/3} y^2 \cdot \sqrt[3]{7 x y^3} \][/tex]

Now, simplify the exponents. Note that [tex]\(2^{5/3}\)[/tex] is not straightforward, but 2 can be taken out as a constant term for simplified representation.

### Step 5: Consolidate Simplified Components
We observe that:
[tex]\[ 2x^2y \cdot \sqrt[3]{7xy^3} \][/tex]

Bringing it all together, we see that the simplified form of the expression is:
[tex]\[ 2 x^2 y \sqrt[3]{7 x y^3} \][/tex]

### Conclusion:
The correct answer is:
[tex]\[ C. \quad 2 x^2 y \sqrt[3]{7 x y^3} \][/tex]