Calculate the volume of a sphere using the formula [tex] \frac{4}{3} \pi r^3 [/tex], where [tex] r [/tex] is the radius.

Given: The radius of the sphere is [tex] 7 \, \text{cm} [/tex].

Calculate the volume of the sphere. Remember to give the correct units and round your answer to one decimal place.



Answer :

To calculate the volume of a sphere, we use the formula:

[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

where [tex]\( V \)[/tex] is the volume, [tex]\( \pi \)[/tex] is a mathematical constant approximately equal to 3.141592653589793, and [tex]\( r \)[/tex] is the radius of the sphere.

Given that the radius [tex]\( r \)[/tex] is 7 cm, we can substitute this value into the formula:

[tex]\[ V = \frac{4}{3} \pi (7)^3 \][/tex]

First, calculate [tex]\( (7)^3 \)[/tex]:

[tex]\[ 7^3 = 7 \times 7 \times 7 = 343 \][/tex]

Next, multiply this result by [tex]\( \pi \)[/tex]:

[tex]\[ \pi \times 343 = 3.141592653589793 \times 343 \approx 1079.1380344384983 \][/tex]

Now, multiply this result by [tex]\( \frac{4}{3} \)[/tex]:

[tex]\[ \frac{4}{3} \times 1079.1380344384983 \approx 1436.7550402417319 \][/tex]

Thus, the exact volume of the sphere is approximately [tex]\( 1436.7550402417319 \)[/tex] cubic centimeters.

To give the answer to 1 decimal place, we round this value:

[tex]\[ 1436.7550402417319 \approx 1436.8 \][/tex]

Thus, the volume of the sphere is [tex]\( 1436.8 \)[/tex] cubic centimeters (cm[tex]\(^3\)[/tex]), rounded to one decimal place.