Answer :
To simplify the expression [tex]\((4 - i)(-3 + 7i) - 7i(8 + 2i)\)[/tex] into the form [tex]\(a + bi\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are rational numbers, follow these steps:
1. Expand the first product [tex]\((4 - i)(-3 + 7i)\)[/tex]:
[tex]\[ \begin{aligned} (4 - i)(-3 + 7i) &= 4 \cdot (-3) + 4 \cdot (7i) + (-i) \cdot (-3) + (-i) \cdot (7i) \\ &= -12 + 28i + 3i - 7i^2 \\ &= -12 + 31i - 7(-1) \quad \text{(since } i^2 = -1) \\ &= -12 + 31i + 7 \\ &= -5 + 31i \end{aligned} \][/tex]
2. Expand the second product [tex]\((-7i)(8 + 2i)\)[/tex]:
[tex]\[ \begin{aligned} (-7i)(8 + 2i) &= (-7i)(8) + (-7i)(2i) \\ &= -56i - 14i^2 \\ &= -56i - 14(-1) \quad \text{(since } i^2 = -1) \\ &= -56i + 14 \end{aligned} \][/tex]
3. Combine the results of the two products:
[tex]\[ \begin{aligned} (-5 + 31i) + (14 - 56i) &= -5 + 31i + 14 - 56i \\ &= (-5 + 14) + (31i - 56i) \\ &= 9 - 25i \end{aligned} \][/tex]
So, the simplified form of [tex]\((4 - i)(-3 + 7i) - 7i(8 + 2i)\)[/tex] is:
[tex]\[ 9 - 25i \][/tex]
Thus, in the form [tex]\(a + bi\)[/tex], we have [tex]\(a = 9\)[/tex] and [tex]\(b = -25\)[/tex].
1. Expand the first product [tex]\((4 - i)(-3 + 7i)\)[/tex]:
[tex]\[ \begin{aligned} (4 - i)(-3 + 7i) &= 4 \cdot (-3) + 4 \cdot (7i) + (-i) \cdot (-3) + (-i) \cdot (7i) \\ &= -12 + 28i + 3i - 7i^2 \\ &= -12 + 31i - 7(-1) \quad \text{(since } i^2 = -1) \\ &= -12 + 31i + 7 \\ &= -5 + 31i \end{aligned} \][/tex]
2. Expand the second product [tex]\((-7i)(8 + 2i)\)[/tex]:
[tex]\[ \begin{aligned} (-7i)(8 + 2i) &= (-7i)(8) + (-7i)(2i) \\ &= -56i - 14i^2 \\ &= -56i - 14(-1) \quad \text{(since } i^2 = -1) \\ &= -56i + 14 \end{aligned} \][/tex]
3. Combine the results of the two products:
[tex]\[ \begin{aligned} (-5 + 31i) + (14 - 56i) &= -5 + 31i + 14 - 56i \\ &= (-5 + 14) + (31i - 56i) \\ &= 9 - 25i \end{aligned} \][/tex]
So, the simplified form of [tex]\((4 - i)(-3 + 7i) - 7i(8 + 2i)\)[/tex] is:
[tex]\[ 9 - 25i \][/tex]
Thus, in the form [tex]\(a + bi\)[/tex], we have [tex]\(a = 9\)[/tex] and [tex]\(b = -25\)[/tex].