A circle with a radius of [tex][tex]$36.9 m$[/tex][/tex] has an arc intercepted by a central angle of [tex][tex]$\frac{8 \pi}{5}$[/tex][/tex] radians.

What is the arc length? Use [tex][tex]$3.14$[/tex][/tex] for [tex][tex]$\pi$[/tex][/tex] and round your final answer to the nearest hundredth.

Enter your answer as a decimal in the box.
[tex]\square[/tex] m



Answer :

Sure! Let's find the arc length for a circle with a given radius and central angle. Here are the steps to solve the problem:

1. Understand the given values:
- Radius ([tex]\( r \)[/tex]) of the circle: [tex]\( 36.9 \)[/tex] meters.
- Central angle ([tex]\( \theta \)[/tex]) in radians: [tex]\( \frac{8 \pi}{5} \)[/tex].

2. Use the formula for the arc length:
The arc length [tex]\( L \)[/tex] of a circle is given by the formula:
[tex]\[ L = r \times \theta \][/tex]

3. Substitute the known values into the formula:
- [tex]\( r = 36.9 \)[/tex] meters.
- [tex]\( \theta = \frac{8 \pi}{5} \)[/tex] radians.

Using [tex]\( \pi \approx 3.14 \)[/tex], we substitute:
[tex]\[ \theta = \frac{8 \times 3.14}{5} = 5.024 \, \text{radians} \][/tex]

4. Calculate the arc length:
[tex]\[ L = 36.9 \times 5.024 \][/tex]
[tex]\[ L \approx 185.3856 \, \text{meters} \][/tex]

5. Round the answer to the nearest hundredth:
[tex]\[ L \approx 185.39 \, \text{meters} \][/tex]

So, the arc length is approximately [tex]\( 185.39 \)[/tex] meters.