Answer :

To convert the repeating decimal [tex]\(0.1\overline{6}\)[/tex] into a fraction, follow these steps:

1. Let [tex]\( x \)[/tex] be the repeating decimal:
[tex]\[ x = 0.1666666\ldots \][/tex]

2. Multiply both sides of the equation by 10 to move the decimal point one place to the right:
[tex]\[ 10x = 1.666666\ldots \][/tex]

3. Subtract the original [tex]\( x \)[/tex] from this new equation:
[tex]\[ 10x - x = 1.666666\ldots - 0.1666666\ldots \][/tex]

4. Perform the subtraction on the right side:
[tex]\[ 9x = 1.5 \][/tex]

5. Now, solve for [tex]\( x \)[/tex] by dividing both sides by 9:
[tex]\[ x = \frac{1.5}{9} \][/tex]

6. Simplify the fraction:
[tex]\[ x = \frac{1.5}{9} = \frac{3/2}{9} = \frac{3}{2} \times \frac{1}{9} = \frac{3}{18} = \frac{1}{6} \][/tex]

Therefore,

[tex]\[ 0.1\overline{6} = \frac{1}{6} = 0.16666666666666666\ldots \][/tex]

The repeating decimal [tex]\(0.1\overline{6}\)[/tex] can be expressed as the fraction [tex]\(\frac{1}{6}\)[/tex].