A car travels 22 miles for every gallon of gasoline used. The table below represents this relationship.

Which equation correctly shows a pair of equivalent ratios that can be used to find the unknown distance [tex]\( x \)[/tex]?

[tex]\[
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Gas Mileage } \\
\hline \begin{tabular}{c}
Distance Traveled \\
(miles)
\end{tabular} & \begin{tabular}{c}
Gasoline Used \\
(gallons)
\end{tabular} \\
\hline 22 & 1 \\
\hline 44 & 2 \\
\hline $x$ & 3 \\
\hline 88 & 4 \\
\hline
\end{tabular}
\][/tex]

A. [tex]\( \frac{22}{1} = \frac{x}{3} \)[/tex]

B. [tex]\( \frac{44}{2} = \frac{x}{3} \)[/tex]

C. [tex]\( \frac{88}{4} = \frac{x}{3} \)[/tex]

D. All of the above



Answer :

To find the unknown distance [tex]\( x \)[/tex] when 3 gallons of gasoline are used, we can use the concept of equivalent ratios. The given problem tells us that a car travels 22 miles for every gallon of gasoline used. Here is the step-by-step solution:

1. Identify the known ratio: We know from the table that the car travels 22 miles for 1 gallon of gasoline.

[tex]\[ \frac{\text{distance}}{\text{gasoline}} = \frac{22 \text{ miles}}{1 \text{ gallon}} \][/tex]

2. Set up the proportion for the unknown: To find the distance [tex]\( x \)[/tex] when 3 gallons of gasoline are used, we can set up a proportion. Based on the constant ratio we know, we have:

[tex]\[ \frac{22 \text{ miles}}{1 \text{ gallon}} = \frac{x \text{ miles}}{3 \text{ gallons}} \][/tex]

3. Solve the proportion: To solve for [tex]\( x \)[/tex], we can cross-multiply and then divide.

[tex]\[ 22 \text{ miles} \cdot 3 \text{ gallons} = x \text{ miles} \cdot 1 \text{ gallon} \][/tex]

Simplifying, we get:

[tex]\[ 66 = x \][/tex]

Therefore, the distance [tex]\( x \)[/tex] when 3 gallons of gasoline are used is 66 miles. So, the correct equation showing a pair of equivalent ratios is:

[tex]\[ \frac{22 \text{ miles}}{1 \text{ gallon}} = \frac{66 \text{ miles}}{3 \text{ gallons}} \][/tex]

This shows that if the car uses 3 gallons of gasoline, it will travel 66 miles.