Select the correct answer.

What are the solutions of the quadratic equation below?

[tex]-7x^2 - 23x + 10 = 0[/tex]

A. [tex]\frac{23 \pm \sqrt{809}}{-14}[/tex]

B. [tex]\frac{23 \pm \sqrt{800}}{-7}[/tex]

C. [tex]\frac{-23 \pm \sqrt{809}}{-14}[/tex]

D. [tex]\frac{-23 \pm \sqrt{809}}{-7}[/tex]



Answer :

To find the solutions of the quadratic equation [tex]\(-7x^2 - 23x + 10 = 0\)[/tex], we need to use the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

For the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], the coefficients are [tex]\(a = -7\)[/tex], [tex]\(b = -23\)[/tex], and [tex]\(c = 10\)[/tex].

First, we'll calculate the discriminant:

[tex]\[ \Delta = b^2 - 4ac \][/tex]

Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:

[tex]\[ \Delta = (-23)^2 - 4(-7)(10) \][/tex]

[tex]\[ \Delta = 529 + 280 \][/tex]

[tex]\[ \Delta = 809 \][/tex]

Next, substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\Delta\)[/tex] into the quadratic formula:

[tex]\[ x = \frac{-(-23) \pm \sqrt{809}}{2(-7)} \][/tex]

Simplify the equation:

[tex]\[ x = \frac{23 \pm \sqrt{809}}{-14} \][/tex]

Thus, the correct answer is:

C. [tex]\(\frac{-23 \pm \sqrt{809}}{-14}\)[/tex]