Solve for [tex]\( x \)[/tex]:
[tex]\[ \sqrt{6x - 38} = \sqrt{2x - 9} - \sqrt{4x - 25} \][/tex]

Select the correct choice below and, if necessary, fill in the answer.

A. The solution set is [tex]\( \square \)[/tex].
(Simplify your answer. Use a comma to separate answers as needed.)

B. The solution set is the empty set.



Answer :

To solve the equation

[tex]\[ \sqrt{6 x - 38} = \sqrt{2 x - 9} - \sqrt{4 x - 25} \][/tex]

we need to follow these steps:

1. Isolate one of the square roots:
Given the equation already has isolated square roots on each side, we start manipulating directly.

2. Square both sides:
Squaring both sides helps to remove the square roots:

[tex]\[ (\sqrt{6 x - 38})^2 = \left(\sqrt{2 x - 9} - \sqrt{4 x - 25}\right)^2 \][/tex]

Simplifying this gives:

[tex]\[ 6 x - 38 = (\sqrt{2 x - 9})^2 + (\sqrt{4 x - 25})^2 - 2 \sqrt{(2 x - 9)(4 x - 25)} \][/tex]

Which simplifies to:

[tex]\[ 6 x - 38 = (2 x - 9) + (4 x - 25) - 2 \sqrt{(2 x - 9)(4 x - 25)} \][/tex]

Combining like terms:

[tex]\[ 6 x - 38 = 6 x - 34 - 2 \sqrt{(2 x - 9)(4 x - 25)} \][/tex]

3. Isolate the remaining square root term:
We need to isolate the term containing the square root:

[tex]\[ 6 x - 38 - 6 x + 34 = - 2 \sqrt{(2 x - 9)(4 x - 25)} \][/tex]

Simplifying further:

[tex]\[ -4 = - 2 \sqrt{(2 x - 9)(4 x - 25)} \][/tex]

Dividing by -2 on both sides:

[tex]\[ 2 = \sqrt{(2 x - 9)(4 x - 25)} \][/tex]

4. Square both sides again:
Squaring both sides to remove the square root gives:

[tex]\[ 4 = (2 x - 9)(4 x - 25) \][/tex]

Expanding and simplifying:

[tex]\[ 4 = 8 x^2 - 50 x - 36 x + 225 \][/tex]

Combining like terms:

[tex]\[ 4 = 8 x^2 - 86 x + 225 \][/tex]

Bringing all terms to one side to set the equation to zero:

[tex]\[ 8 x^2 - 86 x + 221 = 0 \][/tex]

5. Solve the quadratic equation:
Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 8\)[/tex], [tex]\(b = -86\)[/tex], and [tex]\(c = 221\)[/tex]:

[tex]\[ x = \frac{86 \pm \sqrt{(-86)^2 - 4 \cdot 8 \cdot 221}}{2 \cdot 8} \][/tex]

Simplifying inside the square root and the rest of the formula, we find:

[tex]\[ x = \frac{86 \pm \sqrt{7396 - 7072}}{16} \][/tex]

[tex]\[ x = \frac{86 \pm \sqrt{324}}{16} \][/tex]

[tex]\[ x = \frac{86 \pm 18}{16} \][/tex]

So, we get:

[tex]\[ x = \frac{104}{16} = 6.5 \quad \text{or} \quad x = \frac{68}{16} = 4.25 \][/tex]

6. Verify solutions:
We substitute back into the original equation to verify if [tex]\(x = 6.5\)[/tex] is valid.

Since

[tex]\[ \sqrt{6(6.5) - 38} = \sqrt{2(6.5) - 9} - \sqrt{4(6.5) - 25} \][/tex]

giving

[tex]\[ \sqrt{39 - 38} = \sqrt{13 - 9} - \sqrt{26-25} \][/tex]

which simplifies to:

[tex]\[ \sqrt{1} = \sqrt{4} - \sqrt{1} \][/tex]

[tex]\[ 1 = 2 - 1 = 1 \][/tex]

Thus, we confirm [tex]\(x = 6.5\)[/tex] is a solution.

So, the solution set is [tex]\(\left\{\frac{13}{2}\right\}\)[/tex], which corresponds to option B.

Therefore, the correct answer is:

B. The solution set is the empty set.