Sure, let's evaluate the expression [tex]\(\frac{4^x}{2^x}\)[/tex] for [tex]\(x = 3\)[/tex].
1. Substitute [tex]\(x = 3\)[/tex] into the expression:
[tex]\[
\frac{4^3}{2^3}
\][/tex]
2. Evaluate [tex]\(4^3\)[/tex]:
[tex]\[
4^3 = 4 \times 4 \times 4 = 64
\][/tex]
3. Evaluate [tex]\(2^3\)[/tex]:
[tex]\[
2^3 = 2 \times 2 \times 2 = 8
\][/tex]
4. Divide [tex]\(4^3\)[/tex] by [tex]\(2^3\)[/tex]:
[tex]\[
\frac{64}{8} = 8
\][/tex]
So, the value of [tex]\(\frac{4^x}{2^x}\)[/tex] when [tex]\(x = 3\)[/tex] is [tex]\(\boxed{8}\)[/tex].