Answer :

Sure, let's evaluate the expression [tex]\(\frac{4^x}{2^x}\)[/tex] for [tex]\(x = 3\)[/tex].

1. Substitute [tex]\(x = 3\)[/tex] into the expression:
[tex]\[ \frac{4^3}{2^3} \][/tex]

2. Evaluate [tex]\(4^3\)[/tex]:
[tex]\[ 4^3 = 4 \times 4 \times 4 = 64 \][/tex]

3. Evaluate [tex]\(2^3\)[/tex]:
[tex]\[ 2^3 = 2 \times 2 \times 2 = 8 \][/tex]

4. Divide [tex]\(4^3\)[/tex] by [tex]\(2^3\)[/tex]:
[tex]\[ \frac{64}{8} = 8 \][/tex]

So, the value of [tex]\(\frac{4^x}{2^x}\)[/tex] when [tex]\(x = 3\)[/tex] is [tex]\(\boxed{8}\)[/tex].