This test/quiz is accepting submissions until Wednesday, June 26, 2024, at 11:59 pm.

Question 17 (1 point)

If [tex]\( A (0, 3) \)[/tex], [tex]\( B(2, 7) \)[/tex], and [tex]\( C (6, 8) \)[/tex], then [tex]\( AB = BC \)[/tex].

A. True
B. False



Answer :

To determine whether the distances between points A and B (denoted as AB) and between points B and C (denoted as BC) are equal, we need to calculate each distance separately using the distance formula:

The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

1. Calculate the distance AB:

- Coordinates of A: [tex]\((0, 3)\)[/tex]
- Coordinates of B: [tex]\((2, 7)\)[/tex]

[tex]\[ AB = \sqrt{(2 - 0)^2 + (7 - 3)^2} \][/tex]

Simplifying inside the square root:

[tex]\[ AB = \sqrt{2^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20} \approx 4.472 \][/tex]

2. Calculate the distance BC:

- Coordinates of B: [tex]\((2, 7)\)[/tex]
- Coordinates of C: [tex]\((6, 8)\)[/tex]

[tex]\[ BC = \sqrt{(6 - 2)^2 + (8 - 7)^2} \][/tex]

Simplifying inside the square root:

[tex]\[ BC = \sqrt{4^2 + 1^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.123 \][/tex]

3. Comparison of distances AB and BC:

- Distance AB ≈ 4.472
- Distance BC ≈ 4.123

Since 4.472 is not equal to 4.123, we can conclude that [tex]\( AB \neq BC \)[/tex].

Thus, the statement "AB = BC" is False.