\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-5 & 4 \\
\hline
-1 & 0 \\
\hline
6 & -1 \\
\hline
9 & -3 \\
\hline
\end{tabular}

What is the value of [tex]$f(-1)$[/tex]?

A. [tex]$f(-1) = -3$[/tex]
B. [tex]$f(-1) = -1$[/tex]
C. [tex]$f(-1) = 0$[/tex]
D. [tex]$f(-1) = 6$[/tex]



Answer :

To find the value of [tex]\( f(-1) \)[/tex], we need to look at the given table and determine the corresponding [tex]\( f(x) \)[/tex] value when [tex]\( x = -1 \)[/tex].

Here's the table provided:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -5 & 4 \\ \hline -1 & 0 \\ \hline 6 & -1 \\ \hline 9 & -3 \\ \hline \end{array} \][/tex]

We need to find [tex]\( f(-1) \)[/tex]. By looking at the table and finding the x-value of -1, we see the following:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -1 & 0 \\ \hline \end{array} \][/tex]

Therefore, the corresponding [tex]\( f(x) \)[/tex] value when [tex]\( x = -1 \)[/tex] is [tex]\( 0 \)[/tex].

So, the value of [tex]\( f(-1) \)[/tex] is [tex]\( 0 \)[/tex].

Other Questions