Answer :
To find the value of [tex]\( f(-1) \)[/tex], we need to look at the given table and determine the corresponding [tex]\( f(x) \)[/tex] value when [tex]\( x = -1 \)[/tex].
Here's the table provided:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -5 & 4 \\ \hline -1 & 0 \\ \hline 6 & -1 \\ \hline 9 & -3 \\ \hline \end{array} \][/tex]
We need to find [tex]\( f(-1) \)[/tex]. By looking at the table and finding the x-value of -1, we see the following:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -1 & 0 \\ \hline \end{array} \][/tex]
Therefore, the corresponding [tex]\( f(x) \)[/tex] value when [tex]\( x = -1 \)[/tex] is [tex]\( 0 \)[/tex].
So, the value of [tex]\( f(-1) \)[/tex] is [tex]\( 0 \)[/tex].
Here's the table provided:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -5 & 4 \\ \hline -1 & 0 \\ \hline 6 & -1 \\ \hline 9 & -3 \\ \hline \end{array} \][/tex]
We need to find [tex]\( f(-1) \)[/tex]. By looking at the table and finding the x-value of -1, we see the following:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -1 & 0 \\ \hline \end{array} \][/tex]
Therefore, the corresponding [tex]\( f(x) \)[/tex] value when [tex]\( x = -1 \)[/tex] is [tex]\( 0 \)[/tex].
So, the value of [tex]\( f(-1) \)[/tex] is [tex]\( 0 \)[/tex].