Given [tex]I=\[tex]$ 340[/tex], [tex]P=\$[/tex] 1,000[/tex], and [tex]t=8[/tex], solve for [tex]r[/tex].

A. [tex]r=42.5\%[/tex]
B. [tex]r=33.73\%[/tex]
C. [tex]r=4.25\%[/tex]
D. [tex]r=2.54\%[/tex]



Answer :

To determine the rate of interest [tex]\( r \)[/tex], we can use the formula for simple interest:

[tex]\[ I = P \times r \times t \][/tex]

where:
- [tex]\( I \)[/tex] is the interest,
- [tex]\( P \)[/tex] is the principal amount,
- [tex]\( t \)[/tex] is the time period,
- [tex]\( r \)[/tex] is the rate of interest.

Given:
- [tex]\( I = 340 \)[/tex] dollars,
- [tex]\( P = 1,000 \)[/tex] dollars,
- [tex]\( t = 8 \)[/tex] years.

We need to solve for [tex]\( r \)[/tex]. Rearrange the simple interest formula to solve for [tex]\( r \)[/tex]:

[tex]\[ r = \frac{I}{P \times t} \][/tex]

Substitute the given values into the formula:

[tex]\[ r = \frac{340}{1,000 \times 8} \][/tex]

Calculate the value inside the fraction:

[tex]\[ 1,000 \times 8 = 8,000 \][/tex]

Thus,

[tex]\[ r = \frac{340}{8,000} \][/tex]

Simplify the fraction:

[tex]\[ r = 0.0425 \][/tex]

To express the rate as a percentage, multiply by 100:

[tex]\[ r \times 100 = 0.0425 \times 100 = 4.25\% \][/tex]

Therefore, the correct rate of interest [tex]\( r \)[/tex] is:

[tex]\[ \mathbf{4.25\%} \][/tex]