poopey
Answered

From the equation, find the axis of symmetry of the parabola.

[tex]\[ y = 2x^2 + 4x - 1 \][/tex]

A. [tex]\( x = 3 \)[/tex]
B. [tex]\( x = -1 \)[/tex]
C. [tex]\( x = -3 \)[/tex]
D. [tex]\( x = 1 \)[/tex]

Please select the best answer from the choices provided:
A
B
C
D



Answer :

To find the axis of symmetry for the given parabola, we start with the standard form of a quadratic equation:

[tex]\[ y = ax^2 + bx + c \][/tex]

Given the equation:

[tex]\[ y = 2x^2 + 4x - 1 \][/tex]

Here, the coefficients are:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = -1 \)[/tex]

The formula to find the axis of symmetry for a parabola in this form is:

[tex]\[ x = -\frac{b}{2a} \][/tex]

Let's substitute the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the formula:

[tex]\[ x = -\frac{4}{2 \times 2} = -\frac{4}{4} = -1 \][/tex]

Therefore, the axis of symmetry for the given parabola is:

[tex]\[ x = -1 \][/tex]

From the provided answer choices, the correct option is:
b. [tex]\( x = -1 \)[/tex]

So, the best answer is:
B