Which choices are equivalent to the expression below? Check all that apply.

[tex]\[ 4 \sqrt{6} \][/tex]

A. [tex]\(\sqrt{16} \cdot \sqrt{6}\)[/tex]

B. 96

C. [tex]\(\sqrt{32} \cdot \sqrt{3}\)[/tex]

D. [tex]\(\sqrt{96}\)[/tex]

E. [tex]\(\sqrt{4} \cdot \sqrt{36}\)[/tex]

F. [tex]\(\sqrt{24}\)[/tex]



Answer :

To determine which choices are equivalent to the expression [tex]\(4 \sqrt{6}\)[/tex], we will evaluate each given option step by step.

Choice A: [tex]\( \sqrt{16} \cdot \sqrt{6} \)[/tex]

First, let's simplify this expression:

[tex]\[ \sqrt{16} = 4 \][/tex]

So,

[tex]\[ \sqrt{16} \cdot \sqrt{6} = 4 \cdot \sqrt{6} = 4 \sqrt{6} \][/tex]

This is equivalent to [tex]\(4 \sqrt{6}\)[/tex].

Choice B: 96

This option is simply a number.

[tex]\[ 96 \neq 4 \sqrt{6} \][/tex]

Therefore, this is not equivalent to [tex]\(4 \sqrt{6}\)[/tex].

Choice C: [tex]\( \sqrt{32} \cdot \sqrt{3} \)[/tex]

Next, we simplify:

[tex]\[ \sqrt{32} \cdot \sqrt{3} = \sqrt{32 \cdot 3} = \sqrt{96} \][/tex]

So we need to check:

[tex]\[ \sqrt{96} \neq 4 \sqrt{6} \][/tex]

Therefore, this is not equivalent to [tex]\(4 \sqrt{6}\)[/tex].

Choice D: [tex]\( \sqrt{96} \)[/tex]

Here, we have:

[tex]\[ \sqrt{96} \][/tex]

We need to compare this with [tex]\(4 \sqrt{6} = 4 \cdot 2.45 \approx 9.8\)[/tex].

[tex]\[ \sqrt{96} \approx 9.8 \][/tex]

Since the two values are roughly equal, this one is equivalent to [tex]\(4 \sqrt{6}\)[/tex].

Choice E: [tex]\( \sqrt{4} \cdot \sqrt{36} \)[/tex]

Simplifying this, we find:

[tex]\[ \sqrt{4} = 2 \ \text{and} \ \sqrt{36} = 6 \][/tex]

So,

[tex]\[ \sqrt{4} \cdot \sqrt{36} = 2 \cdot 6 = 12 \][/tex]

Since [tex]\(12 \neq 4 \sqrt{6}\)[/tex], this option is not equivalent to [tex]\(4 \sqrt{6}\)[/tex].

Choice F: [tex]\( \sqrt{24} \)[/tex]

Lastly, we evaluate:

[tex]\[ \sqrt{24} \approx 4.9 \][/tex]

Since [tex]\(4.9 \neq 4 \cdot 2.45\)[/tex], this option is also not equivalent to [tex]\(4 \sqrt{6}\)[/tex].

Therefore, the choices that are equivalent to [tex]\(4 \sqrt{6}\)[/tex] are:

A and D.