Use Simpson's Rule with 4 intervals to approximate the following integral. Round your final answer to three decimal places.

[tex]\[
\int_1^9 \sqrt{1+x^2} \, dx
\][/tex]



Answer :

To approximate the integral [tex]\(\int_1^9 \sqrt{1+x^2} \, dx\)[/tex] using Simpson's Rule with [tex]\(n = 4\)[/tex] intervals, we follow these steps:

1. Determine the interval width [tex]\(h\)[/tex]:
[tex]\[ h = \frac{b - a}{n} = \frac{9 - 1}{4} = 2 \][/tex]

2. Identify the function to be integrated:
[tex]\[ f(x) = \sqrt{1 + x^2} \][/tex]

3. Calculate the integral using Simpson's Rule (Simpson's Rule formula):
[tex]\[ S_n = \frac{h}{3} \left[f(a) + f(b) + 4 \sum_{i=1,3} f(a + ih) + 2 \sum_{i=2,4,...n-2} f(a + ih) \right] \][/tex]

4. Evaluate the function at the required points:
- For [tex]\(a = 1\)[/tex] and [tex]\(b = 9\)[/tex]:
[tex]\[ f(a) = f(1) = \sqrt{1 + 1^2} = \sqrt{2} \][/tex]
[tex]\[ f(b) = f(9) = \sqrt{1 + 9^2} = \sqrt{82} \][/tex]

- At the odd intervals:
[tex]\[ f(1 + 2 \cdot 1) = f(3) = \sqrt{1 + 3^2} = \sqrt{10} \][/tex]
[tex]\[ f(1 + 2 \cdot 3) = f(7) = \sqrt{1 + 7^2} = \sqrt{50} \][/tex]

- At the even intervals:
[tex]\[ f(1 + 2 \cdot 2) = f(5) = \sqrt{1 + 5^2} = \sqrt{26} \][/tex]

5. Sum the function values for odd and even intervals:
[tex]\[ \sum_{i=1,3} f(a + ih) = f(3) + f(7) = \sqrt{10} + \sqrt{50} \][/tex]
[tex]\[ \sum_{i=2} f(a + ih) = f(5) = \sqrt{26} \][/tex]

6. Substitute these values back into Simpson's Rule formula:
[tex]\[ S_4 = \frac{2}{3} \left[\sqrt{2} + \sqrt{82} + 4(\sqrt{10} + \sqrt{50}) + 2(\sqrt{26})\right] \][/tex]

7. Calculate the numerical value:
[tex]\[ \sqrt{2} \approx 1.414, \quad \sqrt{82} \approx 9.055, \][/tex]
[tex]\[ \sqrt{10} \approx 3.162, \quad \sqrt{50} \approx 7.071, \][/tex]
[tex]\[ \sqrt{26} \approx 5.099 \][/tex]

Substitute these approximate values:
[tex]\[ S_4 = \frac{2}{3} \left[1.414 + 9.055 + 4(3.162 + 7.071) + 2(5.099)\right] \][/tex]

8. Perform the arithmetic operations inside the brackets:
[tex]\[ = \frac{2}{3} \left[10.469 + 4(10.233) + 10.198\right] \][/tex]
[tex]\[ = \frac{2}{3} \left[10.469 + 40.932 + 10.198\right] \][/tex]
[tex]\[ = \frac{2}{3} \left[61.599\right] \][/tex]

9. Final multiplication:
[tex]\[ S_4 \approx \frac{2}{3} \cdot 61.599 \approx 41.066 \][/tex]

10. Round the final answer to three decimal places:
[tex]\[ \approx 41.067 \][/tex]

Thus, the approximate value of the integral using Simpson's Rule is:
[tex]\[ \boxed{41.067} \][/tex]