Write the equation for the inverse of the function.

[tex]\[ y = \frac{\pi}{4} + \sin x \][/tex]

A. [tex]\[ y = \frac{\pi}{4} - \operatorname{Arcsin} x \][/tex]
B. [tex]\[ y = \operatorname{Arcsin}\left(x + \frac{\pi}{4}\right) \][/tex]
C. [tex]\[ y = \operatorname{Arcsin}\left(x - \frac{\pi}{4}\right) \][/tex]
D. [tex]\[ y = \frac{\pi}{4} + \operatorname{Arcsin} x \][/tex]

Please select the best answer from the choices provided.



Answer :

To find the inverse of the function [tex]\( y = \frac{\pi}{4} + \sin x \)[/tex], let's follow the steps outlined below:

1. Start with the original function:
[tex]\[ y = \frac{\pi}{4} + \sin x \][/tex]

2. Swap [tex]\( y \)[/tex] and [tex]\( x \)[/tex] to begin finding the inverse:
[tex]\[ x = \frac{\pi}{4} + \sin y \][/tex]

3. Solve for [tex]\( y \)[/tex]:

- First, isolate [tex]\( \sin y \)[/tex] by subtracting [tex]\(\frac{\pi}{4}\)[/tex] from both sides:
[tex]\[ x - \frac{\pi}{4} = \sin y \][/tex]

- Next, apply the arcsine (inverse sine) function to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \arcsin\left(x - \frac{\pi}{4}\right) \][/tex]

Hence, the inverse function is:
[tex]\[ y = \arcsin\left(x - \frac{\pi}{4}\right) \][/tex]

Examining the provided options, the correct choice is:
[tex]\[ \boxed{\text{c. } y = \operatorname{Arcsin}\left(x - \frac{\pi}{4}\right)} \][/tex]