Subtract [tex]\( 8 \frac{1}{5} - 4 \frac{2}{5} \)[/tex]. Simplify the answer and write it as a mixed number.

A. [tex]\( 3 \frac{1}{5} \)[/tex]

B. [tex]\( 4 \frac{4}{5} \)[/tex]

C. [tex]\( 4 \frac{1}{5} \)[/tex]

D. [tex]\( 3 \frac{4}{5} \)[/tex]



Answer :

Sure! Let's work through the subtraction of the mixed numbers [tex]\(8 \frac{1}{5} - 4 \frac{2}{5}\)[/tex] step by step.

1. Convert the mixed numbers to improper fractions:

For [tex]\(8 \frac{1}{5}\)[/tex]:
[tex]\[ 8 \frac{1}{5} = \frac{8 \times 5 + 1}{5} = \frac{40 + 1}{5} = \frac{41}{5} \][/tex]

For [tex]\(4 \frac{2}{5}\)[/tex]:
[tex]\[ 4 \frac{2}{5} = \frac{4 \times 5 + 2}{5} = \frac{20 + 2}{5} = \frac{22}{5} \][/tex]

2. Subtract the improper fractions:

Since both improper fractions have the same denominator, subtract the numerators:
[tex]\[ \frac{41}{5} - \frac{22}{5} = \frac{41 - 22}{5} = \frac{19}{5} \][/tex]

3. Convert the result back to a mixed number:

Divide the numerator by the denominator:
[tex]\[ \frac{19}{5} = 3 \text{ remainder } 4 \][/tex]

So, the mixed number is:
[tex]\[ 3 \frac{4}{5} \][/tex]

This means we have 3 as the whole number part and [tex]\( \frac{4}{5} \)[/tex] as the fraction part.

Thus, the simplified answer, written as a mixed number, is:
[tex]\[ 3 \frac{4}{5} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{3 \frac{4}{5}} \][/tex]