Answered

Given [tex]\( f(x) = x - 1 \)[/tex], complete the table below.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-1 & \\
\hline
0 & \\
\hline
1 & \\
\hline
\end{tabular}
\][/tex]



Answer :

Sure! Let's solve the problem step by step:

We are given a function [tex]\( f(x) = x - 1 \)[/tex]. We need to evaluate this function for the values [tex]\( x = -1 \)[/tex], [tex]\( x = 0 \)[/tex], and [tex]\( x = 1 \)[/tex], and then fill in the corresponding values for [tex]\( f(x) \)[/tex] in the table.

1. Evaluate [tex]\( f(x) \)[/tex] for [tex]\( x = -1 \)[/tex]:

Substitute [tex]\( x = -1 \)[/tex] into the function:
[tex]\[ f(-1) = -1 - 1 = -2 \][/tex]

So, [tex]\( f(-1) = -2 \)[/tex].

2. Evaluate [tex]\( f(x) \)[/tex] for [tex]\( x = 0 \)[/tex]:

Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = 0 - 1 = -1 \][/tex]

So, [tex]\( f(0) = -1 \)[/tex].

3. Evaluate [tex]\( f(x) \)[/tex] for [tex]\( x = 1 \)[/tex]:

Substitute [tex]\( x = 1 \)[/tex] into the function:
[tex]\[ f(1) = 1 - 1 = 0 \][/tex]

So, [tex]\( f(1) = 0 \)[/tex].

Now, we can fill in the table with the calculated values:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -1 & -2 \\ \hline 0 & -1 \\ \hline 1 & 0 \\ \hline \end{tabular} \][/tex]

Thus, the completed table looks like this:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -1 & -2 \\ \hline 0 & -1 \\ \hline 1 & 0 \\ \hline \end{tabular} \][/tex]