If [tex]\sin(x) = -\frac{1}{3}[/tex] and [tex]\cos(x) \ \textgreater \ 0[/tex], what is [tex]\tan(2x)[/tex]?

A. [tex]-\frac{4 \sqrt{2}}{7}[/tex]

B. [tex]-\frac{4 \sqrt{2}}{9}[/tex]

C. [tex]\frac{4 \sqrt{2}}{9}[/tex]

D. [tex]\frac{4 \sqrt{2}}{7}[/tex]



Answer :

Let's start with the given information:
[tex]\[ \sin (x) = -\frac{1}{3} \][/tex]
and
[tex]\[ \cos (x) > 0 \][/tex]

Since [tex]\(\cos(x) > 0\)[/tex] and [tex]\(\sin(x) < 0\)[/tex], [tex]\(x\)[/tex] must be in the fourth quadrant where sine is negative and cosine is positive.

Using the Pythagorean identity:
[tex]\[ \sin^2(x) + \cos^2(x) = 1 \][/tex]

Substituting the given value of [tex]\(\sin(x)\)[/tex]:
[tex]\[ \left( -\frac{1}{3} \right)^2 + \cos^2(x) = 1 \][/tex]
[tex]\[ \frac{1}{9} + \cos^2(x) = 1 \][/tex]

Solving for [tex]\(\cos^2(x)\)[/tex]:
[tex]\[ \cos^2(x) = 1 - \frac{1}{9} \][/tex]
[tex]\[ \cos^2(x) = \frac{9}{9} - \frac{1}{9} \][/tex]
[tex]\[ \cos^2(x) = \frac{8}{9} \][/tex]

Since [tex]\(\cos(x) > 0\)[/tex], we take the positive square root:
[tex]\[ \cos(x) = \sqrt{\frac{8}{9}} = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3} \][/tex]

Next, we calculate [tex]\(\tan(x)\)[/tex]:
[tex]\[ \tan(x) = \frac{\sin(x)}{\cos(x)} = \frac{-\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = \frac{-1}{3} \cdot \frac{3}{2\sqrt{2}} = \frac{-1}{2\sqrt{2}} = -\frac{\sqrt{2}}{4} \][/tex]

Now, we use the double-angle formula for tangent:
[tex]\[ \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} \][/tex]

Substituting [tex]\(\tan(x) = -\frac{\sqrt{2}}{4}\)[/tex]:
[tex]\[ \tan(2x) = \frac{2 \left( -\frac{\sqrt{2}}{4} \right)}{1 - \left( -\frac{\sqrt{2}}{4} \right)^2} \][/tex]
[tex]\[ \tan(2x) = \frac{2 \left( -\frac{\sqrt{2}}{4} \right)}{1 - \frac{2}{16}} \][/tex]
[tex]\[ \tan(2x) = \frac{-\frac{\sqrt{2}}{2}}{1 - \frac{1}{8}} \][/tex]
[tex]\[ \tan(2x) = \frac{-\frac{\sqrt{2}}{2}}{\frac{8}{8} - \frac{1}{8}} \][/tex]
[tex]\[ \tan(2x) = \frac{-\frac{\sqrt{2}}{2}}{\frac{7}{8}} \][/tex]
[tex]\[ \tan(2x) = -\frac{\sqrt{2}}{2} \cdot \frac{8}{7} = -\frac{4\sqrt{2}}{7} \][/tex]

Thus, the value of [tex]\(\tan(2x)\)[/tex] is:
[tex]\[ -\frac{4 \sqrt{2}}{7} \][/tex]

So the correct answer is:
[tex]\[ -\frac{4 \sqrt{2}}{7} \][/tex]