poopey
Answered

The degree of the expression [tex][tex]$4x^5 y^m z$[/tex][/tex] is 10. What is the value of [tex][tex]$m$[/tex][/tex]?

A. 2
B. 4
C. 5
D. 10



Answer :

To determine the value of [tex]\( m \)[/tex] in the given expression [tex]\( 4 x^5 y^m z \)[/tex], we need to understand the concept of the degree of a polynomial.

The degree of a polynomial is the sum of the exponents of the variables in each term, and for a single term polynomial, it is simply the sum of the exponents of the variables in that term.

Let's analyze the term [tex]\( 4 x^5 y^m z \)[/tex]:
- The exponent of [tex]\( x \)[/tex] is [tex]\( 5 \)[/tex].
- The exponent of [tex]\( y \)[/tex] is [tex]\( m \)[/tex].
- The exponent of [tex]\( z \)[/tex] is [tex]\( 1 \)[/tex].

The degree of the expression is given to be [tex]\( 10 \)[/tex]. Hence, we can write:

[tex]\[ \text{Degree of the expression} = \text{Exponent of } x + \text{Exponent of } y + \text{Exponent of } z \][/tex]

[tex]\[ 10 = 5 + m + 1 \][/tex]

Now, solve for [tex]\( m \)[/tex]:

[tex]\[ 10 = 5 + m + 1 \][/tex]

[tex]\[ 10 = 6 + m \][/tex]

[tex]\[ m = 10 - 6 \][/tex]

[tex]\[ m = 4 \][/tex]

Hence, the value of [tex]\( m \)[/tex] is [tex]\( 4 \)[/tex].