Repeated addition:
[tex]\[
\begin{array}{l}
\left[\begin{array}{l}
1 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
a=\square \quad b=\square
\end{array}
\][/tex]



Answer :

To solve the repeated addition of vectors step-by-step, let's add each vector component-wise.

Given the vectors:
[tex]\[ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \][/tex]

We need to calculate the sum for each component separately:

1. First component (a):
[tex]\[ a = 1 + 1 + 1 \][/tex]

2. Second component (b):
[tex]\[ b = 3 + 3 + 3 \][/tex]

Calculating each:

- For the first component (a):
[tex]\[ 1 + 1 + 1 = 3 \][/tex]

- For the second component (b):
[tex]\[ 3 + 3 + 3 = 9 \][/tex]

So, the resulting vector from the addition is:
[tex]\[ \begin{pmatrix} 3 \\ 9 \end{pmatrix} \][/tex]

Thus, [tex]\( a = 3 \)[/tex] and [tex]\( b = 9 \)[/tex].