Let [tex][tex]$p$[/tex][/tex] have a value of 3.6 and [tex][tex]$q$[/tex][/tex] have a value of 5.2.

1. For number line A, locate [tex][tex]$p - q$[/tex][/tex].
2. For number line B, locate [tex][tex]$p + (-q)$[/tex][/tex].



Answer :

Let's break down the problem step by step:

### Number Line A: Locating [tex]\( p - q \)[/tex]

1. Identify the values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
- [tex]\( p = 3.6 \)[/tex]
- [tex]\( q = 5.2 \)[/tex]

2. Subtract [tex]\( q \)[/tex] from [tex]\( p \)[/tex]:
- [tex]\( p - q = 3.6 - 5.2 \)[/tex]

3. Compute the difference:
- When you subtract 5.2 from 3.6, you end up with [tex]\( -1.6 \)[/tex].

So, on number line A, [tex]\( p - q \)[/tex] is located at [tex]\( -1.6 \)[/tex].

### Number Line B: Locating [tex]\( p + (-q) \)[/tex]

1. Identify the values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
- [tex]\( p = 3.6 \)[/tex]
- [tex]\( q = 5.2 \)[/tex]

2. Compute [tex]\( -q \)[/tex]:
- Since [tex]\( q = 5.2 \)[/tex], then [tex]\( -q = -5.2 \)[/tex].

3. Add [tex]\( p \)[/tex] and [tex]\( -q \)[/tex]:
- [tex]\( p + (-q) = 3.6 + (-5.2) \)[/tex]

4. Compute the sum:
- When you add [tex]\( 3.6 \)[/tex] and [tex]\( -5.2 \)[/tex], you again get [tex]\( -1.6 \)[/tex].

So, on number line B, [tex]\( p + (-q) \)[/tex] is also located at [tex]\( -1.6 \)[/tex].

In conclusion, for both number line A and number line B, the locations are at [tex]\( -1.6 \)[/tex].