It took Kelly [tex]\( 2 \frac{4}{5} \)[/tex] hours to fly from City A to City B. Then it took her another [tex]\( 4 \frac{2}{3} \)[/tex] hours to fly from City B to City C.

Kelly flew a total of [tex]\(\square\)[/tex] hours.



Answer :

Sure, let's break this down step by step:

1. First, we need to convert the mixed numbers into decimals for easier addition.

- For the flight time from City A to City B:
[tex]\[ 2 \frac{4}{5} = 2 + \frac{4}{5} \][/tex]
Converting [tex]\(\frac{4}{5}\)[/tex] to a decimal:
[tex]\[ \frac{4}{5} = 0.8 \][/tex]
Therefore:
[tex]\[ 2 \frac{4}{5} = 2 + 0.8 = 2.8 \text{ hours} \][/tex]

- For the flight time from City B to City C:
[tex]\[ 4 \frac{2}{3} = 4 + \frac{2}{3} \][/tex]
Converting [tex]\(\frac{2}{3}\)[/tex] to a decimal:
[tex]\[ \frac{2}{3} \approx 0.6667 \][/tex]
Therefore:
[tex]\[ 4 \frac{2}{3} \approx 4 + 0.6667 \approx 4.6667 \text{ hours} \][/tex]

2. Next, we add the two flight times together to find the total flight time:

- Total flight time:
[tex]\[ 2.8 \text{ hours} + 4.6667 \text{ hours} \approx 7.4667 \text{ hours} \][/tex]

Therefore, Kelly flew a total of approximately [tex]\( 7.4667 \)[/tex] hours.