If [tex][tex]$f(x)=\sqrt{x-3}$[/tex][/tex], which inequality can be used to find the domain of [tex][tex]$f(x)$[/tex][/tex]?

A. [tex]\sqrt{x-3} \geq 0[/tex]
B. [tex]x-3 \geq 0[/tex]
C. [tex]\sqrt{x-3} \leq 0[/tex]
D. [tex]x-3 \leq 0[/tex]



Answer :

To determine the domain of the function [tex]\(f(x) = \sqrt{x-3}\)[/tex], we must understand the properties of the square root function. The square root function is defined only for non-negative numbers because the square root of a negative number is not a real number.

To ensure that the expression inside the square root, [tex]\(x-3\)[/tex], is non-negative, we must solve the following inequality:

[tex]\[ x - 3 \geq 0 \][/tex]

This inequality ensures that the argument of the square root is zero or positive, which is required for the square root function to produce a real number.

Solving the inequality [tex]\(x - 3 \geq 0\)[/tex]:
1. Add 3 to both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x \geq 3 \][/tex]

Thus, the inequality that can be used to find the domain of [tex]\(f(x) = \sqrt{x-3}\)[/tex] is:

[tex]\[ x - 3 \geq 0 \][/tex]

So, the correct answer is:
[tex]\[ x-3 \geq 0 \][/tex]