Given that
[tex]\[ x^2 : (3x + 14) = 1 : 2 \][/tex]
find the possible values of [tex]\( x \)[/tex].

Write your values of [tex]\( x \)[/tex] on one line separated by a comma (e.g., [tex]\( x = \ldots, \ldots \)[/tex] ).



Answer :

To find the possible values of [tex]\(x\)[/tex] given the ratio

[tex]\[ \frac{x^2}{3x + 14} = \frac{1}{2}, \][/tex]

we will solve this equation step-by-step.

1. Set up the equation:
[tex]\[ \frac{x^2}{3x + 14} = \frac{1}{2}. \][/tex]

2. Clear the fraction by cross-multiplying:
[tex]\[ 2x^2 = 3x + 14. \][/tex]

3. Rearrange the equation to set it to zero:
[tex]\[ 2x^2 - 3x - 14 = 0. \][/tex]

4. Solve this quadratic equation using the quadratic formula:
The quadratic formula is given by
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \][/tex]
where [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -14\)[/tex].

5. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac = (-3)^2 - 4 \cdot 2 \cdot (-14) = 9 + 112 = 121. \][/tex]

6. Find the roots using the quadratic formula:
[tex]\[ x = \frac{-(-3) \pm \sqrt{121}}{2 \cdot 2} = \frac{3 \pm 11}{4}. \][/tex]

There are two solutions:
[tex]\[ x_1 = \frac{3 + 11}{4} = \frac{14}{4} = 3.5, \][/tex]
[tex]\[ x_2 = \frac{3 - 11}{4} = \frac{-8}{4} = -2. \][/tex]

The possible values of [tex]\(x\)[/tex] are:
[tex]\[ x = -2, 3.5. \][/tex]