When comparing the functions [tex]f(x) = x^2 - x[/tex] and [tex]g(x) = \log(2x + 1)[/tex], on which interval are both functions positive?

A. [tex](-\infty, 0)[/tex]
B. [tex](0, 1)[/tex]
C. [tex](1, \infty)[/tex]
D. [tex](-\infty, \infty)[/tex]



Answer :

To find the interval where both functions [tex]\( f(x) = x^2 - x \)[/tex] and [tex]\( g(x) = \log(2x + 1) \)[/tex] are positive, we need to analyze each function separately and then find the common interval where both conditions are satisfied.

1. Determine where [tex]\( f(x) = x^2 - x > 0 \)[/tex]:

The quadratic [tex]\( x^2 - x \)[/tex] can be factored as:
[tex]\[ x^2 - x = x(x - 1) \][/tex]
Therefore, [tex]\( x(x - 1) > 0 \)[/tex].

- The product of two numbers is positive when both numbers are positive or both numbers are negative.
- [tex]\( x(x - 1) > 0 \)[/tex] when [tex]\( x > 1 \)[/tex] or [tex]\( x < 0 \)[/tex] (excluding [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex], since [tex]\( f(x) = 0 \)[/tex] at these points).

So, [tex]\( f(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 0) \cup (1, \infty) \)[/tex].

2. Determine where [tex]\( g(x) = \log(2x + 1) > 0 \)[/tex]:

The function [tex]\( \log(2x + 1) \)[/tex] is positive when the argument of the logarithm is greater than 1:
[tex]\[ 2x + 1 > 1 \][/tex]
Solving the inequality:
[tex]\[ 2x + 1 > 1 \implies 2x > 0 \implies x > 0 \][/tex]
So, [tex]\( g(x) > 0 \)[/tex] for [tex]\( x \in (0, \infty) \)[/tex].

3. Find the intersection of intervals:

We need the values of [tex]\( x \)[/tex] that satisfy both conditions:
[tex]\[ f(x) > 0 \quad \text{and} \quad g(x) > 0 \][/tex]

From the conditions above:
- [tex]\( f(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 0) \cup (1, \infty) \)[/tex]
- [tex]\( g(x) > 0 \)[/tex] for [tex]\( x \in (0, \infty) \)[/tex]

The intersection of these intervals where both functions are positive is:
[tex]\[ (1, \infty) \][/tex]

Therefore, the correct interval where both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are positive is:

[tex]\((1, \infty)\)[/tex]