The following table shows the balance on a credit card over the period of 1 month that charges a [tex]$15.5\%$[/tex] APR (interest rate).

\begin{tabular}{|c|c|c|}
\hline
Days & Balance & Description \\
\hline
[tex]$1-5$[/tex] & [tex]$\$[/tex]200[tex]$ & Initial Balance \\
\hline
$[/tex]6-20[tex]$ & $[/tex]\[tex]$350$[/tex] & [tex]$\$[/tex]150[tex]$ purchase \\
\hline
$[/tex]21-30[tex]$ & $[/tex]\[tex]$150$[/tex] & [tex]$\$[/tex]200[tex]$ payment \\
\hline
\end{tabular}

What is the finance charge on the average daily balance for this card over this 1 month period?

Finance Charge $[/tex]=\[tex]$[?]$[/tex]



Answer :

To determine the finance charge on the average daily balance for this credit card over a 1-month period, we will follow these steps:

1. Identify the number of days the balance was at each value:
- Days 1-5: \[tex]$200 (Initial Balance) - Days 6-20: \$[/tex]350 (After a \[tex]$150 purchase) - Days 21-30: \$[/tex]150 (After a \[tex]$200 payment) 2. Calculate the total number of days in the month: - Total days = \(5 + 15 + 10 = 30\) 3. Calculate the weighted balance for each period and sum them: - Days 1-5: \(5 \text{ days} \times \$[/tex]200 = \[tex]$1000\) - Days 6-20: \(15 \text{ days} \times \$[/tex]350 = \[tex]$5250\) - Days 21-30: \(10 \text{ days} \times \$[/tex]150 = \[tex]$1500\) - Total weighted balance = \( \$[/tex]1000 + \[tex]$5250 + \$[/tex]1500 = \[tex]$7750 \) 4. Determine the average daily balance: - Average daily balance = Total weighted balance / Total days - \( \text{Average daily balance} = \$[/tex]7750 / 30 = \[tex]$258.33 \) (rounded to two decimal places) 5. Calculate the monthly interest rate from the APR: - APR = 15.5\% - Monthly interest rate = APR / 12 - \( \text{Monthly interest rate} = 0.155 / 12 ≈ 0.01291667 \) 6. Calculate the finance charge: - Finance charge = Monthly interest rate × Average daily balance - \( \text{Finance charge} = 0.01291667 \times 258.33 ≈ 3.34 \) (rounded to two decimal places) Hence, the finance charge on the average daily balance for this credit card over this 1-month period is approximately \$[/tex]3.34.