The surface area of a sphere is given by the equation [tex]S = 4 \pi r^2[/tex]. Which of the following represents the radius [tex]r[/tex] of the sphere?

A. [tex]r = \sqrt{\frac{S}{4\pi}}[/tex]

B. [tex]r = \frac{S}{4\pi}[/tex]

C. [tex]r = \frac{S}{4\pi^2}[/tex]

D. [tex]r = \sqrt{\frac{4\pi}{S}}[/tex]



Answer :

To find the radius [tex]\( r \)[/tex] of a sphere given the surface area [tex]\( S \)[/tex] using the equation [tex]\( S = 4 \pi r^2 \)[/tex]:

1. Start with the surface area formula for a sphere:

[tex]\[ S = 4 \pi r^2 \][/tex]

2. To isolate [tex]\( r \)[/tex], we must first solve for [tex]\( r^2 \)[/tex]. Divide both sides of the equation by [tex]\( 4\pi \)[/tex]:

[tex]\[ \frac{S}{4 \pi} = r^2 \][/tex]

3. Next, to solve for [tex]\( r \)[/tex], take the square root of both sides. Since a square root can be positive or negative, we must consider both solutions:

[tex]\[ r = \pm \sqrt{\frac{S}{4 \pi}} \][/tex]

4. Simplify the expression under the square root:

[tex]\[ r = \pm \frac{\sqrt{S}}{\sqrt{4 \pi}} \][/tex]

5. Simplify the denominator further, knowing that [tex]\(\sqrt{4} = 2\)[/tex] and [tex]\(\sqrt{\pi} = \sqrt{\pi}\)[/tex]:

[tex]\[ r = \pm \frac{\sqrt{S}}{2 \sqrt{\pi}} \][/tex]

Hence, the radius [tex]\( r \)[/tex] of the sphere given the surface area [tex]\( S \)[/tex] is:

[tex]\[ r = \pm \frac{\sqrt{S}}{2 \sqrt{\pi}} \][/tex]